Comparative Damage Analysis of Impact Induced Traditional and Graded Filament Wound Glass Fiber/Epoxy Composite Pipes

Abstract:

Article Preview

Epoxy-glass fiber composite pipes were fabricated with filament winding machine. Full automation and precise control over the processing parameters are the major advantages of this manufacturing technique. Stacking sequence is one of the important processing parameters on which the properties of filament wound components depend to a large extent. This paper comes up with a comparative damage analysis of traditional composite pipes (TCPs) of stacking sequence [±55]6, and functionally graded composite pipes (FGCP) of stacking sequence [70-55-40-40-55-70]. The stacking sequence in FGCP was chosen such that the average stacking angle is retained the same as of TCPs, i.e. [±55]. An impact analysis of these pipes was carried out. Impact energy of 45 J was applied on both pipes and damage was quantified using back-lighting technique. It was observed that the damage occurred in FGCPs was 30% lesser compared to TCPs.

Info:

Periodical:

Edited by:

Darren Martin

Pages:

17-21

Citation:

S. S. Ahankari et al., "Comparative Damage Analysis of Impact Induced Traditional and Graded Filament Wound Glass Fiber/Epoxy Composite Pipes", Materials Science Forum, Vol. 923, pp. 17-21, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] L. Zu, J. Wang and S. Li: Int. J. Hyd. Energy. Vol. 39 (2014), p.21083.

[2] J. C. Q. Amado: Lightweight Composite Structures in Transport (2016), p.421.

[3] A. A. Vicario, S. M. S. Ramanan and S. Arun: Reference Module in Mat. Sci. Mat. Engg. (2016).

[4] D. Bogdanoski: Reinforced Plastics. Vol. 61 (2017), p.234.

[5] I. Demir, O. Sayman, A. Dogan, A. Arikan and Y. Arman: Compos. Part B. Vol. 68 (2015), p.121.

[6] S. Kavousi, M. Shakeri and M. Sadighi: Compos. Struct. Vol. 132 (2015), p.960.

[7] S. Kim, M. Cha, I. Lee, E. Kim, B. Kwon and T. Hwang: Compos. Part B. Vol. 66 (2014), p.36.

[8] K.E. Evans and K.L. Alderson: Compos. Struct. Vol. 20(1) (1992), p.47.

[9] T. Zeng, D. Fang and T Lu: Mater. Lett. Vol. 59, (2005), p.1491.

[10] K. S. Krishnamurthy, P. Mahajan, R. K. Mittal: Compos. Sci. Technol. Vol. 61 (2001), p.1655.

[11] G. P. Zhao and C. D. Cho: Compos. Struct. Vol. 78 (2007), p.91.

[12] P. B. Gning, M. Tarfaoui, F. Collombet and P. Davies: J. Compos. Mater. Vol. 39(10) (2005), p.917.

[13] P. B. Gning, M. Tarfaoui, F. Collombet, L. Riou and P. Davies: Compos. Part B Vol. 36 (2005), p.306.

[14] M. Sari, M. E. Deniz, R. Karakuzu and B. M. Icten: J. Compos. Mater. Vol. 46(15) (2012), p.1187.

[15] M. Tarfaoui, P. B. Gning, F. Collombet: J. Compos. Mater. Vol. 41(18) (2007), p.2165.

[16] A. B. Doyum and B. Altay: Mater. Des. Vol. 18 (1997), p.131.

[17] M. Uyaner, M. Kara and A. Sahin: Compos. Part B, Vol. 6 (2014), p.358.

[18] M. Will, T. Franz and G. Nurick: Compos. Struct. Vol. 58 (2002), p.259.