Effect of TiO2 Incorporation on Separation Performance of Pure PES and PES/PVAc Blend Membranes


Article Preview

In this research work, polyethersulfone (PES) and polyethersulfone/polyvinyl acetate (PES/PVAc) blend were incorporated with 10 wt.% of TiO2 nanoparticles to form mixed matrix membranes (MMM). FESEM and TGA were utilized respectively to scrutinize the morphology and thermal stability of the developed membranes. Permeation tests of ideal CO2 and CH4 gases were also conducted to assess the separation performance of resultant membranes. The PES/PVAc/TiO2 polymer blend MMM was found to be the most thermally resistant and has the highest CO2 permeability and CO2/CH4 selectivity as compared to the other membranes.



Edited by:

Darren Martin




M. A. Abdullah et al., "Effect of TiO2 Incorporation on Separation Performance of Pure PES and PES/PVAc Blend Membranes", Materials Science Forum, Vol. 923, pp. 35-39, 2018

Online since:

May 2018




* - Corresponding Author

[1] B. Shimekit and H. Mukhtar, Natural gas purification technologies-major advances for CO2 separation and future directions: INTECH Open Access Publisher Croatia, Europe, (2012).

DOI: https://doi.org/10.5772/38656

[2] L. Robeson, Historical Perspective of Advances in the Science and Technology of Polymer Blends,, Polymers, vol. 6, pp.1251-1265, (2014).

DOI: https://doi.org/10.3390/polym6051251

[3] Y. Yampolskii, Polymeric Gas Separation Membranes,, Macromolecules, vol. 45, pp.3298-3311, (2012).

DOI: https://doi.org/10.1021/ma300213b

[4] L. M. Robeson, The upper bound revisited,, Journal of Membrane Science, vol. 320, pp.390-400, (2008).

[5] N. Jusoh, Y. F. Yeong, T. L. Chew, K. K. Lau, and A. M. Shariff, Current Development and Challenges of Mixed Matrix Membranes for CO2/CH4 Separation,, Separation & Purification Reviews, vol. 45, pp.321-344, (2016).

DOI: https://doi.org/10.1080/15422119.2016.1146149

[6] C. Zhao, J. Xue, F. Ran, and S. Sun, Modification of polyethersulfone membranes – A review of methods,, Progress in Materials Science, vol. 58, pp.76-150, (2013).

DOI: https://doi.org/10.1016/j.pmatsci.2012.07.002

[7] H. A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D. F. Mohshim, and A. Mushtaq, Recent Applications of Polymer Blends in Gas Separation Membranes,, Chemical Engineering & Technology, vol. 36, pp.1838-1846, (2013).

DOI: https://doi.org/10.1002/ceat.201300342

[8] I. Sreedhar, R. Vaidhiswaran, B. M. Kamani, and A. Venugopal, Process and engineering trends in membrane based carbon capture,, Renewable and Sustainable Energy Reviews, vol. 68, pp.659-684, (2017).

DOI: https://doi.org/10.1016/j.rser.2016.10.025

[9] S. H. A. Abdul Hadi, H. Mukhtar, H. Abdul Mannan, and T. Murugesan, Polyethersulfone/Polyvinyl Acetate Blend Membrane for CO2/CH4 Gas Separation,, Applied Mechanics and Materials, vol. 754-755, pp.44-48, (2015).

DOI: https://doi.org/10.4028/www.scientific.net/amm.754-755.44

[10] M. Farnam, H. Mukhtar, and A. M. Shariff, An investigation of blended polymeric membranes and their gas separation performance,, RSC Adv., vol. 6, pp.102671-102679, (2016).

DOI: https://doi.org/10.1039/c6ra21574b

[11] E. Bet-moushoul, Y. Mansourpanah, K. Farhadi, and M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes,, Chemical Engineering Journal, vol. 283, pp.29-46, (2016).

DOI: https://doi.org/10.1016/j.cej.2015.06.124

[12] J. Ahmad and M. B. Hågg, Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation,, Journal of Membrane Science, vol. 445, pp.200-210, (2013).

DOI: https://doi.org/10.1016/j.memsci.2013.04.052

[13] P. Moradihamedani, N. A. Ibrahim, W. M. Z. W. Yunus, and N. A. Yusof, Study of morphology and gas separation properties of polysulfone/titanium dioxide mixed matrix membranes,, Polymer Engineering & Science, vol. 55, pp.367-374, (2015).

DOI: https://doi.org/10.1002/pen.23887

[14] N. Azizi, T. Mohammadi, and R. M. Behbahani, Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4,, Journal of Natural Gas Science and Engineering, vol. 37, pp.39-51, (2017).

DOI: https://doi.org/10.1016/j.jngse.2016.11.038

[15] C.-Y. Liang, P. Uchytil, R. Petrychkovych, Y.-C. Lai, K. Friess, M. Sipek, et al., A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes,, Separation and Purification Technology, vol. 92, pp.57-63, (2012).

DOI: https://doi.org/10.1016/j.seppur.2012.03.016

[16] J. Han, W. Lee, J. M. Choi, R. Patel, and B.-R. Min, Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation,, Journal of Membrane Science, vol. 351, pp.141-148, (2010).

DOI: https://doi.org/10.1016/j.memsci.2010.01.038

[17] N. P. Panapitiya, S. N. Wijenayake, Y. Huang, D. Bushdiecker, D. Nguyen, C. Ratanawanate, et al., Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs),, Polymer, vol. 55, pp.2028-2034, (2014).

DOI: https://doi.org/10.1016/j.polymer.2014.03.008

[18] H. Sanaeepur, A. E. Amooghin, A. Moghadassi, and A. Kargari, Preparation and characterization of acrylonitrile–butadiene–styrene/poly(vinyl acetate) membrane for CO2 removal,, Separation and Purification Technology, vol. 80, pp.499-508, (2011).

DOI: https://doi.org/10.1016/j.seppur.2011.06.003