Understanding the Chemistry in Silicon Carbide Chemical Vapor Deposition

Abstract:

Article Preview

Understanding the chemistry in CVD of SiC is important to be able to control, improve and scale up the process to become industrially competitive. A thorough understanding have so far been difficult to achieve due to the complex nature of the process. Through modeling tools, and a systematic approach when constructing the chemical models, new insights to the SiC CVD chemistry can be obtained. Using a general model that is independent on the choice of precursors and reactor configuration, and by coupling modeling results to experimental findings, we here show that SiCl2 and SiH2 previously suggested as the main silicon bearing growth species in the chlorinated and standard chemistries, respectively, does not contribute significantly to the SiC growth, and that the main active species are C2H2, CH3, Si, and SiCl.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

100-103

Citation:

Ö. Danielsson "Understanding the Chemistry in Silicon Carbide Chemical Vapor Deposition", Materials Science Forum, Vol. 924, pp. 100-103, 2018

Online since:

June 2018

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] M. D. Allendorf, R.J. Kee, A model of silicon carbide chemical vapor deposition, J. Electrochem. Soc. 138 (1991) 841-852.

DOI: https://doi.org/10.1149/1.2085688

[2] Ö. Danielsson, A. Henry, E. Janzén, Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers, J. Cryst. Growth 243 (2002) 170-184.

DOI: https://doi.org/10.1016/s0022-0248(02)01486-0

[3] A. Veneroni, M. Masi, Gas-phase and surface kinetics of epitaxial silicon carbide growth involving chloring-containing species, Chem. Vap. Deposition 12 (2006) 562-568.

DOI: https://doi.org/10.1002/cvde.200606468

[4] W. Tsang, R. F. Hampson, Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds, J. Phys. Chem. Ref. Data 15 (1986) 1087-1279.

DOI: https://doi.org/10.1063/1.555759

[5] M. E. Coltrin, R. J. Kee, J. A. Miller, A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor, J. Electrochem. Soc. 131 (1984) 425-434.

DOI: https://doi.org/10.1149/1.2115598

[6] Ö. Danielsson, P. Sukkaew, L. Ojamäe, O. Kordina, E. Janzén, Shortcomings of CVD modeling of SiC today, Theor. Chem. Acc. 132 (2013) 1398.

DOI: https://doi.org/10.1007/s00214-013-1398-9

[7] F. La Via, G. Izzo, M. Camarda, G. Abbondanza, D. Crippa, Thick epitaxial layers growth by chlorine addition, Mater. Sci. Forum 615-617 (2009) 55-60.

DOI: https://doi.org/10.4028/www.scientific.net/msf.615-617.55

[8] H. Pedersen, F. C. Beyer, J. Hassan, A. Henry, E. Janzén, Donor incorporation in SiC epilayers grown at high growth rate with chloride-based CVD, J. Cryst. Growth 311 (2009) 1321-1327.

DOI: https://doi.org/10.1016/j.jcrysgro.2008.12.029

[9] R. Karhu, I. Booker, J. Ul Hassan, I. Ivanov, E. Janzén, The role of chlorine during high growth rate epitaxy. Mater. Sci. Forum 821-823 (2015) 141-144.

DOI: https://doi.org/10.4028/www.scientific.net/msf.821-823.141

[10] P. Sukkaew, Ö. Danielsson, O. Kordina, E. Janzén, L. Ojamäe, Ab initio study of growth mechanism of 4H-SiC: Adsorption and surface reaction of C2H2, C2H4, CH4 and CH3, J. Phys. Chem. C 121 (2017) 1249-1256.

DOI: https://doi.org/10.1021/acs.jpcc.6b11085

[11] P. Sukkaew, E. Kalered, E. Janzén, O. Kordina, Ö. Danielsson, L. Ojamäe, Growth mechanism of SiC chemical vapor deposition: Adsorption and surface reactions of active Si species, J. Phys. Chem C 122 (2018) 648-661.

DOI: https://doi.org/10.1021/acs.jpcc.7b10751

Fetching data from Crossref.
This may take some time to load.