Optical and Microstructural Investigation of Heavy B-Doping Effects in Sublimation-Grown 3C-SiC


Article Preview

In this work, a complementary microstructural and optical approach is used to define processing conditions favorable for the formation of deep boron-related acceptor centers that may provide a pathway for achieving an intermediate band behavior in highly B-doped 3C-SiC. The crystallinity, boron solubility and precipitation mechanisms in sublimation-grown 3C-SiC crystals implanted to 1-3 at.% B concentrations were investigated by STEM. The revealed defect formation and boron precipitation trends upon thermal treatment in the range 1100-2000°C have been cross-correlated with the optical characterization results provided by imaging PL spectroscopy. We discuss optical activity of the implanted B ions in terms of both shallow acceptors and deep D-centers, a complex formed by a boron atom and a carbon vacancy, and associate the observed spectral developments upon annealing with the strong temperature dependence of the D-center formation efficiency, which is further enhanced by the presence of implantation-induced defects.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




A. Galeckas et al., "Optical and Microstructural Investigation of Heavy B-Doping Effects in Sublimation-Grown 3C-SiC", Materials Science Forum, Vol. 924, pp. 221-224, 2018

Online since:

June 2018




* - Corresponding Author

[1] M. Syväjärvi , Q. Ma, V. Jokubavicius, A. Galeckas, J. Sun, X. Liu, M. Jansson, P. Wellmann, M. Linnarsson, P. Runde, B. A Johansen, A. Thøgersen, S. Diplas, P. A. Carvalho, O. M. Løvvik, D. N. Wright, A. Y. Azarov, and B. G. Svensson, Sol. Energ. Mat. Sol. C 145 (2016).

DOI: https://doi.org/10.1016/j.solmat.2015.08.029

[2] Q. Ma, A. Galeckas, A. Azarov, A. Thøgersen, P. Carvalho, D. N. Wright, S. Diplas, O. M. Løvvik, V. Jokubavicius, X. Liu, J. Sun, M. Syväjärvi, and B. G. Svensson, Mater. Sci. Forum 858 (2016) 291-294.

DOI: https://doi.org/10.4028/www.scientific.net/msf.858.291

[3] V. Jokubavicius, G. Reza Yazdi, R. Liljedahl, I. G. Ivanov, R. Yakimova, and M. Syväjärvi, Cryst. Growth Des. 14 (2014) 6514-6520.

DOI: https://doi.org/10.1021/cg501424e

[4] W. Suttrop, G. Pensl, and P. Lanig, Appl. Phys. A 51 (1990) 231-237.

[5] T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications, Wiley-IEEE Press, (2014).

[6] H. Werheit, H. W. Rotter, S. Shalamberidze, A. Leithe-Jasper, and T. Tanaka, Phys. Status Solidi B 248 (2011) 1275–1279.

DOI: https://doi.org/10.1002/pssb.201046342

[7] H. M. Ayedh, R. Nipoti, A. Hallén, and B. G. Svensson, Appl. Phys. Lett. 107 (2015) 252102.

Fetching data from Crossref.
This may take some time to load.