Deep Level Defects in 4H-SiC Epitaxial Layers

Abstract:

Article Preview

We present a study of electrically active radiation-induced defects formed in 4H-SiC epitaxial layers following irradiation with fast neutrons, as well as 600 keV H+ and 2 MeV He++ ion implantations. We also look at electron emission energies and mechanisms of the carbon vacancy in 4H-SiC by means of first-principles modelling. Combining the relative stability of carbon vacancies at different sites with the relative amplitude of the observed Laplace-DLTS peaks, we were able to connect Z1 and Z2 to emissions from double negatively charged carbon vacancies located at the h- and k-sites, respectively.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

225-228

Citation:

I. Capan et al., "Deep Level Defects in 4H-SiC Epitaxial Layers", Materials Science Forum, Vol. 924, pp. 225-228, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Ito, L. Storasta, and H. Tsuchida, Appl. Phys. Express. 1, (2008) 015001-3.

[2] Snoj, L. et al., Computational analysis of irradiation facilities at the JSI TRIGA reactor, Applied Radiation and Isotopes, Volume 70, Issue 3, 2012, Pages 483-488.

DOI: https://doi.org/10.1016/j.apradiso.2011.11.042

[3] Trkov, A. et al., The GRUPINT neutron spectrum adjustment code – general features and characterization of the spectra in three irradiation channels of the JSI TRIGA reactor, International Symposium on Reactor Dosimetry (ISRD-16), 2017, May 7-12, Santa Fe (NM), USA.

[4] Z. Pastuovic, R. Siegele, D. D. Cohen, M. Ionescu, M. Mann, D. Button, S. Long, Nucl. Instr. Meth. Phys. Res. B 404, (2017) 1-8.

[5] Z.Pastuovic, I.Capan, D.D. Cohen, J.Forneris, N. Iwamoto, T.Ohshima, R.Siegele, N.Hoshino, and H.Tsuchida, Nucl. Inst. Meth. Phys. Res. B 348 (2015) 233-239.

[6] G. Kresse and J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

[7] P. E. Blöchl, Phys. Rev. B 50 (1994) 17953.

[8] A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125(2006) 224106.

[9] C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102 (2009) 016402.

[10] N. T. Son, X. T. Trinh, L. S. Løvlie, B. G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, and E. Janzén, Phys. Rev. Lett. 109 (2012) 187603-5.

DOI: https://doi.org/10.1103/physrevlett.109.187603

[11] C. Hemmingsson, N. T. Son, O. Kordina, J. P. Bergman, E. Janzén, J. L. Lindström, S. Savage and N. Nordell, J. Appl. Phys. 81 (1997) 6155-6159.

DOI: https://doi.org/10.1063/1.364397

[12] A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, Appl. Phys. Lett. 85 (2004) 3780-3782.

DOI: https://doi.org/10.1063/1.1810627

[13] Z. Pastuovic, I.Capan, S. Sato, T. Brodar, T. Ohshima, R. Siegele, J. Phys.: Condens. Matter 29 (2017) 475701.

DOI: https://doi.org/10.1088/1361-648x/aa908c

[14] X. T. Trinh, K. Szász, T. Hornos, K. Kawahara, J. Suda, T. Kimoto, A. Gali, E. Janzén, and N. T. Son, Phys. Rev. B 88 (2013) 235209.

[15] M. Bockstedte, A. Marini, O. Pankratov, and A. Rubio, Phys. Rev. Lett. 105 (2010) 026401.

Fetching data from Crossref.
This may take some time to load.