High Resolution Optical Spectroscopy of Free Exciton and Electronic Band Structure near the Fundamental Gap in 4H SiC

Abstract:

Article Preview

We use thick, relatively high purity 4H SiC boule material to measure the wavelength modulated absorption spectrum with improved wavelength resolution and sensitivity with respect to previous work. We observe several small 0.6 ± 0.1 meV splittings, which we attribute to electron mass anisotropy and electron-hole exchange interaction. In addition, we identify several features in the absorption spectrum as signatures of nonparabolicity in the free exciton dispersion relations, the primary origin of which is likely the nonparabolic energy dispersion of the valence bands, as revealed by published band structure calculations based on density functional theory.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

239-244

Citation:

W. M. Klahold et al., "High Resolution Optical Spectroscopy of Free Exciton and Electronic Band Structure near the Fundamental Gap in 4H SiC", Materials Science Forum, Vol. 924, pp. 239-244, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] W. J. Choyke, L. Patrick, and D. R. Hamilton, Proc. 7th Int. Conf. Phys. Semiconductors (Dunod, Paris, 1964) 751-758.

[2] W. J. Choyke, R. P. Devaty, and S. G. Sridhara, Phys. Scripta T79 (1999) 9.

[3] S. G. Sridhara, S. Bai, O. Shigiltchoff, R. P. Devaty, and W. J. Choyke, Mater. Sci. Forum 338-342 (2000) 567.

DOI: https://doi.org/10.4028/www.scientific.net/msf.338-342.567

[4] W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, Phys. Status Solidi B 202 (1997) 5.

[5] C. Persson and U. Lindefelt, J. Appl. Phys. 82 (1997) 5496.

[6] G. Wellenhofer and U. Rössler, Phys. Status Solidi B 202 (1997) 107.

[7] R. J. Elliott, Phys. Rev. 108 (1957) 1384.

[8] N. O. Lipari and M. Altarelli, Phys. Rev. B 15 (1977) 4883.

[9] G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of Thirty-Two Point Groups, MIT Press, Cambridge, MA, (1963).

[10] K. L. Shaklee and J. E. Rowe, Appl. Opt. 9 (1970) 627.

[11] S.G. Sridhara, T.J. Eperjesi, R.P. Devaty and W.J. Choyke, Mater. Sci. Eng. B 61-62 (1999) 229.

[12] J. Serrano, J. Strempfer, M. Cardona, M. Schwoerer-Böhning, H. Requardt, M. Lorenzen, B. Stojetz, P. Pavone, and W. J. Choyke, Mater. Sci. Forum 433-436 (2003) 257.

DOI: https://doi.org/10.4028/www.scientific.net/msf.433-436.257

[13] W. J. Choyke, R. P. Devaty, L. L. Clemen, M. F. MacMillan, M. Yoganathan, and G. Pensl, Inst. Phys. Conf. Ser. 142 (1996) 257.

[14] I. G. Ivanov, U. Lindefelt, A. Henry, O. Kordina, C. Hallin, M. Aroyo, T. Egilsson, and E. Janzén, Phys. Rev. B 58 (1998) 13634.

DOI: https://doi.org/10.1103/physrevb.58.13634

[15] I. S. Gorban, V. A. Gubanov, V. G. Lysenko, A. A. Pletyushkin, and V. B. Timofeev, Fiz. Tverd. Tela 26 (1984) 2282 [Sov. Phys. Solid State 26 (1984) 1385].

[16] A. Frova, G. A. Thomas, R. E. Miller, and E. O. Kane, Phys. Rev. Lett. 34 (1975) 1572.

[17] M. Altarelli and N. O. Lipari, Phys. Rev. Lett. 36 (1976) 619.