Depth Profiling of Carrier Lifetime in Thick 4H-SiC Epilayers Using Two-Photon Absorption


Article Preview

Depth profiling of the ambipolar carrier lifetime was performed in n-type, 140mm thick silicon carbide (SiC) epilayer using excitation by two-photon absorption (TPA) with a pulsed 586nm laser, and confocal measurement of time resolved photoluminescence (TRPL) decay from the excited region. A depth resolution of ≈10mm was obtained. The PL decay curves were analyzed using a recently developed formalism that takes into account the TPA excitation, carrier diffusion and surface/interface recombination. The carrier lifetime decreases near the top surface of the epitaxial layer as well as near its interface with the substrate.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




N. A. Mahadik et al., "Depth Profiling of Carrier Lifetime in Thick 4H-SiC Epilayers Using Two-Photon Absorption", Materials Science Forum, Vol. 924, pp. 265-268, 2018

Online since:

June 2018




[1] S. Hazra, A. De, S. Bhattacharya, 2014 Int. Pow. Elec. Conf. Hiroshima, (2014) 3447.

[2] E. van Brunt, L. Cheng, M. J. O'Loughlin, J. Richmond, V. Pala, J. Palmour, C. W. Tipton, C. Scozzie, Mater. Sci. Forum 821-823 (2015) 847.


[3] E. Saito, J. Suda, T. Kimoto, Appl. Phys. Express 9 (2016) 061303.

[4] L. Stotasta, H. Tsuchida, Appl. Phys. Lett. 90 (2007) 062116.

[5] L. Storasta, H. Tsuchida, T. Miyazawa, T. Ohshima, J. Appl. Phys. 103 (2008) 013705.

[6] T. Hiyoshi, T. Kimoto, Appl. Phys. Express 2 (2009) 041101.

[7] T. Hiyoshi T. Kimoto, Appl. Phys. Express 2 (2009) 091101.

[8] S. Ichikawa, K. Kawahara, J. Suda, T. Kimoto, Appl. Phys. Express 5 (2012) 101301.

[9] K. Danno, D. Nakamura, T. Kimoto, Appl. Phys. Lett. 90 (2007) 202109.

[10] M. Goppert-Mayer, Ann. Phys. 9 (1931) 273.

[11] P. Grivickas, V. Grivickas, J. Linnros, A. Galeckas, J. Appl. Phys. 101 (2007) 123521.


[12] G. Liaugaudas, K. Jarašiūnas, N. Tsavdaris, E. Sarigiannidou, D. Chaussende, Mater. Sci. Forum 778-780 (2014) 305.


[13] H. Hamad, C. Raynaud, P. Bevilacqua, D. Tournier, B. Vergne, D. Planson, Appl. Phys. Lett. 104 (2014) 082102.

[14] R. Tanuma, M. Nagano, I. Kamata, H. Tsuchida, Appl. Phys. Exp. 7 (2014) 121303.

[15] R. Tanuma, H. Tsuchida, Mater. Sci. Forum 778-780 (2014) 338.

[16] E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Boggess, Opt. Eng. 24 (1985) 613.


[17] T. F. Boggess, K. M. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quant. Elect. 22 (1986) 360.

[18] V. Grivickas, P. Grivickas, J. Linnros, A. Galeckas, Mater. Sci. Forum 457-460 (2004) 605.


[19] S. Singh, J.R. Potopowicz, L.G. Van Uitert, S. H. Wemple, Appl. Phys. Lett. 19 (1971) 53.

[20] D. McMorrow, W. T. Lotshaw, J. S. Melinger, S. Buchner, R. L. Pease, IEEE Trans. Nuc. Sci. 49 (2002) 3002.


[21] P. B. Klein, J. Appl. Phys. 103 (2008) 033702.

[22] B. Gaury, P. M. Haney, J. Appl. Phys. 119 (2016) 125105.