THz Emission from SiC Natural Superlattice Diodes Induced by Strong Electrical Field


Article Preview

Recently the intense terahertz electroluminescence from monopolar n++–n –n+ structures of 6H- and 8H-SiC of natural superlattices at helium temperatures due to Bloch oscillations was discovered. In the present work we present the THz emission spectra of bipolar n++–π–n+ structures (π is a high-resistance layer of p-type conductivity) of natural superlattices 4H-, 8H- and 15R-SiC at 7 K. The bipolar n++–π–n+ structures of 4H- and 8H-SiC were analogous to those of structures for which the negative differential conductivity effect was observed earlier for three polytypes (4H, 6H and 8H) at T=300 K. We demonstrate resemblance and differences of the spontaneous THz emission spectra for the monopolar and bipolar 4H-, 6H- 8H- and 15R-SiC natural superlattices caused by Bloch oscillations of electrons in the SiC natural superlattice.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




V. I. Sankin et al., "THz Emission from SiC Natural Superlattice Diodes Induced by Strong Electrical Field", Materials Science Forum, Vol. 924, pp. 310-313, 2018

Online since:

June 2018




* - Corresponding Author

[1] Clarence Zener, A theory of the electrical breakdown of solid dielectrics, Proc. R. Soc. London, Ser. A 145 (1934), 523-529.

[2] A. Y. Shik, Superlattices - periodic semiconductor structures, Soviet Phys. Semicond. 8 (1974) 1195.

[3] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Optical investigation of Bloch oscillations in a semiconductor superlattice, Phys. Rev. B 46 (1992) 7252-7255.

[4] R. Martini, G. Klose, H. G. Roskos, H. Kurz, H. T. Grahn, and R. Hey, Superradiant emission from Bloch oscillations in semiconductor superlattices, Phys. Rev. B 54 (1996) R14325-R14328.

[5] V. I. Sankin, A. V. Andrianov, A. O. Zakhar'in, and A. G. Petrov, Terahertz electroluminescence from 6H-SiC structures with natural superlattice, Appl. Phys. Lett. 100 (2012), 111109.

[6] P. Voisin, Wannier-Stark effects in semiconductor superlattices, Ann. Phys. Fr. 22 (1997), 681- 705.

[7] V. I. Sankin and A. V. Naumov, The Wannier-Stark effect and the negative differential resistance in silicon carbide, Tech. Phys. Lett. 16 (1990), 281.

[8] V. Sankin, Wannier-Stark localization in the natural superlattice of silicon carbide polytypes, Semiconductors 36 (2002) 717-739.

[9] V. I. Sankin, A. V. Andrianov, A. G. Petrov, P. P. Shkrebiy, and A. O. Zakhar'in, Terahertz electroluminescence of 6H-SiC natural SiC superlattice in Bloch oscillations regime, Mater. Sci. Forum 717-720 (2012) 553-556.

[10] V. I. Sankin, A. V. Andrianov, A.G. Petrov, A.O. Zakhar'in, S. S. Nagalyuk, P. P. Shkrebiy, and N. I. Sablina, The Bloch oscillations and THz electroluminescence in natural superlattices of 6H-, 8H-SiC polytypes, Mater. Sci. Forum 821-823 (2015).

[11] A. Laref and S. Laref, Electronic and optical properties of SiC polytypes using a transferable semi-empirical tight-binding model, Physica status solidi (b) 245 (2008) 89-100.

[12] V. I. Sankin, A. G. Petrov, and M. Kaliteevski, Impact ionization of nitrogen in 4H- and 6H-SiC, Journal of Applied Physics, 114 (2013) 063704.

Fetching data from Crossref.
This may take some time to load.