Study of Ti/Al/Ni Ohmic Contacts to p-Type Implanted 4H-SiC


Article Preview

This work reports on the electrical and microstructural properties of Ti/Al/Ni contacts to p-type implanted 4H-SiC obtained by rapid thermal annealing of a metal stack of Ti (70 nm)/Al (200 nm)/Ni (50 nm). The contact characteristics were monitored at increasing value of the annealing temperature. The Ohmic behavior of the contact, with a specific contact resistance value of 2.3×10-4 Ω·cm2, is obtained for an annealing at 950 °C. The structural analyses of the contact, carried out by XRD and TEM, reveal the occurrence of reactions, with the detection of the Al3Ni2 and AlTi phases in the upper part of the contact and of an epitaxially oriented TiC layer at the interface. These reactions are considered the key factors in the formation of an Ohmic contact in our annealed Ti/Al/Ni system. The temperature-dependence study of the electrical characteristics reveals a predominant thermionic field emission (TFE) mechanism for the current conduction through the contact, with a barrier height of 0.56 eV.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




M. Vivona et al., "Study of Ti/Al/Ni Ohmic Contacts to p-Type Implanted 4H-SiC", Materials Science Forum, Vol. 924, pp. 377-380, 2018

Online since:

June 2018




* - Corresponding Author

[1] T. Kimoto, J. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, John Wiley & Sons, Singapore Pte. Ltd. (2014).

[2] F. Roccaforte, A. Frazzetto, G. Greco, F. Giannazzo, P. Fiorenza, R. Lo Nigro, M. Saggio, M. Leszczynski, P. Pristawko, V. Raineri,, Appl. Surf. Sci. 258, (2012) 8324.


[3] F. Roccaforte, M. Vivona, G. Greco, R. Lo Nigro, F. Giannazzo, S. Di Franco, C. Bongiorno, F. Iucolano, A. Frazzetto, S. Rascunà, A. Patti, M. Saggio, Phys. Status Solidi A 214, (2017) 1600357.


[4] M. Vivona, G. Greco, F. Giannazzo, R. Lo Nigro, S. Rascunà, M. Saggio, F. Roccaforte, Semicond. Sci. Technol. 29, (2014) 075018.


[5] J. Crofton, S. E. Mohney, J. R. Williams and T. Isaacs-Smith, Solid-State Electron. 46, (2002) 109.

[6] B. J. Johnson and M. A. Capano, Solid-State Electron. 47, (2003) 1437.

[7] A. Frazzetto, F. Giannazzo, R. Lo Nigro, V. Raineri, F. Roccaforte, J. Phys. D: Appl. Phys. 44, (2011) 255302.

[8] Z. Wang, W. Liu, C. Wang, J. Electron. Mater. 45, (2016) 267.

[9] C. A. Fisher, et al., Int. J. Fund. Phys. Sci. 4, (2014) 95.

[10] O. Nakatsuka, T. Takei, Y. Koide, M. Murakami, Mater. Trans. 43, (2002) 1684.

[11] T. Abi-Tannous, M. Soueidan, G. Ferro, M. Lazar, C, Raynaud, B. Toury, M.F. Beaufort, J.-F. Barbot, O. Dezellus, D. Planson, IEEE Trans. on Electron Dev. 63, (2016) 2462.


[12] H. Tamaso, S. Yamada, H. Kitabayashi, and T. Horii, Mater. Sci. Forum 778–780, (2014) 669.

[13] R. Jennings, et al., Mater. Sci. Forum 778-780, (2014) 693.

[14] M. Vivona, G. Greco, R. Lo Nigro, C. Bongiorno, F. Roccaforte, J. Appl. Phys. 118, (2015) 035705.

[15] P. Fedeli, M. Puzzanghera, F. Moscatelli, R. A. Minamisawa, G. Alfieri. U. Grossner, R. Nipoti, Mater. Sci. Forum 897, (2017) 391.


[16] M. Vivona, G. Greco, C. Bongiorno, R. Lo Nigro, S. Scalese, F. Roccaforte, Appl. Surf. Sci. 420, (2017) 331.