Temperature-Dependence Study of the Gate Current SiO2/4H-SiC MOS Capacitors


Article Preview

We present a temperature-dependence electrical characterization of the oxide/semiconductor interface in MOS capacitors with a SiO2 layer deposited on 4H-SiC using dichlorosilane and nitrogen-based vapor precursors. The post deposition annealing process in N2O allowed to achieve an interface state density Dit  9.0×1011cm-2eV-1 below the conduction band edge. At room temperature, an electron barrier height (conduction band offset) of 2.8 eV was measured using the standard Fowler-Nordheim tunneling model. The electron conduction through the SiO2 insulating layer was evaluated by studying the experimental temperature dependence of the gate current. In particular, the Fowler-Nordheim electron barrier height showed a negative temperature coefficient (dφB/dT = - 0.98 meV/°C), which is very close to the expected value for an ideal SiO2/4H-SiC system. This result, obtained for deposited SiO2 layers, is an improvement compared to the values of the temperature coefficient of the Fowler-Nordheim electron barrier height reported for thermally grown SiO2. In fact, the smaller dependence of φB on the temperature observed in this work represents a clear advantage of our deposited SiO2 for the operation of MOSFET devices at high temperatures.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




P. Fiorenza et al., "Temperature-Dependence Study of the Gate Current SiO2/4H-SiC MOS Capacitors", Materials Science Forum, Vol. 924, pp. 473-476, 2018

Online since:

June 2018




* - Corresponding Author

[1] G. Y. Chung, et al, IEEE Electron Device Lett. 22 (2001) 176-178.

[2] P. Fiorenza, F. Giannazzo, A. Frazzetto, F. Roccaforte, J. Appl. Phys. 112 (2012) 084501 1-6.

[3] Hatekeyama et al., Appl. Phys. Express 10 (2017) 046601.

[4] T. Zheleva, et al Appl. Phys. Lett. 93 (2008) 022108 1-3.

[5] W. Li, J. Zhao, D. Wang, AIP Advances 5 (2015) 017122 1-9.

[6] F. C. Stedile, et al., Mater. Sci. Forum 645-648 (2010) 689-692.

[7] T. L. Biggerstaff, et al , Appl. Phys. Lett. 95 (2009) 032108 1-3.

[8] T. Kimoto, Jpn. J. Appl. Phys., Part 1 54 (2015) 040103.

[9] G. Liu, B. R. Tuttle and S. Dhar, Appl. Phys. Rev. 2 (2015) 021307.

[10] F. Roccaforte, P. Fiorenza, G. Greco, M. Vivona, R. Lo Nigro, F. Giannazzo, A. Patti, M. Saggio, Appl. Surf. Sci. 301 (2014) 9-18.

DOI: https://doi.org/10.1016/j.apsusc.2014.01.063

[11] A. J. Lelis, R. Green, D. B. Habersat, M. El, IEEE Trans. Electron Dev. 62 (2015) 316-323.

[12] M. Sometani, et al, J. Appl. Phys. 117 (2015) 024505.

[13] P. Fiorenza, A. La Magna, M. Vivona, F. Roccaforte, Applied Physics Letters 109 (2016) 012102.

[14] M. Vivona, P. Fiorenza, F. Iucolano, A. Severino, S. Lorenti, F. Roccaforte, Materials Science Forum 897 (2017) 331.

DOI: https://doi.org/10.4028/www.scientific.net/msf.897.331

[15] A. Frazzetto, F. et al, Appl. Phys. Lett. 99 (2011) 072117 1-3.

[16] R. K. Chanana, et al, Appl. Phys. Lett. 77 (2000) 2560.

[17] P. Samanta K. C. Mandal J.Appl. Phys. 121 (2017) 034501.

Fetching data from Crossref.
This may take some time to load.