Impact of Cell Layout and Device Structure on On-Voltage Reduction of 6.5-kV n-Channel SiC IGBTs


Article Preview

A box cell layout and a hole-barrier structure were used to realize low-on-voltage n-channel 4H-SiC IGBTs with 6.5-kV blocking capability. Box cell layout can increase the channel width, leading to reduction of the channel resistance and an enhancement of electron injection from an emitter. Hole-barrier structure, which is a potential barrier for holes to prevent them from flowing out of the emitter, can enhance conductivity modulation. An on-voltage of 3.98 V at a collector current of 100 A/cm2 was achieved from a fabricated SiC IGBTin this study. Since the on-voltage of a SiC IGBT with a conventional structure was 4.81 V at the same collector current, the effect of our new structure was successfully shown to reduce the on-voltage of SiC IGBTs. An estimation of each voltage component involved in the on-voltage was also carried out by utilizing a device simulation, and the estimation shows that a SiC IGBT incorporating a box layout and hole-barrier structure will thus have quite a low drift-layer voltage and an on-voltage close to the limit determined by the bipolar built-in voltage.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




N. Watanabe et al., "Impact of Cell Layout and Device Structure on On-Voltage Reduction of 6.5-kV n-Channel SiC IGBTs", Materials Science Forum, Vol. 924, pp. 637-640, 2018

Online since:

June 2018




* - Corresponding Author

[1] T. Kimoto, Jpn. J. Appl. Phys. 54 (2015) 040103.

[2] Q. Zhang, C. Jonas, S. –H. Ryu, A. Agarwal, and J. Palmour, IEEE Proc. ISPSD 2006, 285-288.

[3] T. Deguchi, T. Mizushima, H. Hujisawa, K Takenaka, Y. Yonezawa, K. Fukua, H. Okumura, M. Arai, A. Tanaka, S. Ogata, T. Hayashi, K. Nakayama, K. Asano, S. Matsunaga, N. Kumagai, and M. Takei, IEEE Proc. ISPSD 2014, 261-264.


[4] X. Wang and J. A. Cooper, IEEE Trans. Electron Dev. 57 (2010) 511-515.

[5] Y. Yonezawa, T. Mizushima, K. Takenaka, H. Fujisawa, T. Kato, S. Harada, Y. Tanaka, M. Okamoto, M. Sometani, D. Okamoto, N. Kumagai, S. Matsunaga, T. Deguchi, M. Arai, T. Hatakeyama, Y. Makifuchi, T. Araoka, N. Oose, T. Tsutsumi, M. Yoshikawa, K. Tatera, M. Harashima, Y. Sano, E. Morisaki, M. Takei, M. Miyajima, H. Kimura, A. Otsuki, K. Fukuda, H. Okumura, and T. Kimoto, IEEE Proc. IEDM 2013, 6.6.1-6.6.4.


[6] S. Ryu, C. Capell, C. Jonas, M. O'Loughlin, J. Clayton, E. Van Brunt, K. Lam, J. Richmond, A. Kadavelugu, S. Bhattacharya, A. Burk, A. Agarwal. D. Grider, S. Allen, and J. Palmour, Mater. Sci. Forum 778-780 (2014) 1030-1033.


[7] E. Van Brunt, L. Cheng, M. J. O'Loughlin, J. Richmond, V. Pala, J. Palmour, C. W. Tipton and C. Scozzie, Mater. Sci. Forum 821-823 (2015) 847-850.


[8] N. Watanabe, H. Yoshimoto, A. Shima, R. Yamada, and Y. Shimamoto, Mater. Sci. Forum, 858 (2016) 939.