Effect of Negative Gate Bias on Single Pulse Avalanche Ruggedness of 1.2 kV Silicon Carbide MOSFETs

Abstract:

Article Preview

When power MOSFETs experience a voltage spike initiating avalanche generation, a large amount of power is dissipated at the device junction. This leads to self-heating and lowers the threshold voltage. Some sources indicate that unintended opening of the channel creates a positive feedback, thereby increasing heat generation and leading to thermal runaway. Therefore, keeping MOSFETs off by applying a negative gate bias should improve avalanche ruggedness. In this report, this claim is investigated by comparing single pulse avalanche ruggedness of commercial 1.2 kV, 80 mΩ planar and trench MOSFETs at -10 V and 0 V off-state gate bias. Both planar and trench devices show a small increase in their breakdown voltage with negative gate bias. However, there is no significant difference in avalanche withstanding energy. Even in investigated trench gate devices where the gate oxide is susceptible to interface as well as oxide defects, keeping the gate voltage at VGS = -10 V did not result in improvements in ruggedness.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

735-738

Citation:

S. Nida et al., "Effect of Negative Gate Bias on Single Pulse Avalanche Ruggedness of 1.2 kV Silicon Carbide MOSFETs", Materials Science Forum, Vol. 924, pp. 735-738, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] B.J. Baliga, Fundamentals of Power Semiconductor Devices, Springer, New York, (2008).

[2] T. Kimoto, Jpn. J. Appl. Phys. 54 (2015) 1-27.

[3] J. Hu, O. Alatise, J.A.O. Gonzalez, R. Bonyadi, L. Ran, and P.A. Mawby, IEEE Trans. Power Electron. 31 (2016) 4526-4535.

[4] O. Alatise, I. Kennedy, G. Petkos, K. Heppenstall, K. Khan, J.P.A. Koh, and P. Rutter, 2010 Proc. Eur. Solid State Device Res. Conf. ESSDERC (2010) 273-276.

DOI: https://doi.org/10.1109/essderc.2010.5618365

[5] A. Fayyaz, G. Romano, J. Urresti, M. Riccio, A. Castellazzi, A. Irace, and N. Wright, Energies 10 (2017) 452-467.

DOI: https://doi.org/10.3390/en10040452

[6] R. Williams, M. Darwish, R. Blanchard, R. Siemieniec, P. Rutter and Y Kawaguchi, IEEE Trans. Elec Devices. 64 (2017) 692-712.

[7] M. Kelley, B. Pushpakaran, and S. Bayne, IEEE Trans. Power Electron. 32 (2017) 6405-6415.

[8] Ng, J. C. W., Sin, J. K. O., Sumida, H., Toyoda, Y., Ohi, A., Tanaka, H., Nishimura, T., Ueno, K. (2011). IEEE Trans. Elec Devices. 58 (2011) 3984-3990.

DOI: https://doi.org/10.1109/ted.2011.2164081

[9] D. Peters, T. Aichinger, T. Basler, W. Bergner, D. Kueck, R. Esteve, Mat. Sci. Forum 897 (2017) 489-492.

DOI: https://doi.org/10.4028/www.scientific.net/msf.897.489

Fetching data from Crossref.
This may take some time to load.