Comparison of Single- and Double-Trench UMOSFETs in 4H-SiC


Article Preview

Silicon carbide (SiC) trench MOSFETs, or UMOSFETs, generally exhibit lower specific on-resistance than planar DMOSFETs due to a more compact unit cell, higher electron mobility on the a-face surface, and the absence of a JFET region. In this paper we compare the performance of two types of trench UMOSFETs based on 2-D SentaurusTM Device simulations, and show that the single-trench oxide-protected structure exhibits ~40% lower specific on-resistance and half the peak oxide field of the double-trench design when both are optimized for maximum figure of merit.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




M. Sampath et al., "Comparison of Single- and Double-Trench UMOSFETs in 4H-SiC", Materials Science Forum, Vol. 924, pp. 752-755, 2018

Online since:

June 2018




* - Corresponding Author

[1] K. Hamada, M. Nagao, M. Ajioka, F. Kawai, SiC-Emerging Power Device Technology for Next-Generation Electrically Powered Environmentally Friendly Vehicles, IEEE Transactions on Electron Devices 62 (2015) 278.


[2] J. Tan, J. A. Cooper, Jr., M. R. Melloch, High-voltage accumulation-layer UMOSFET's in 4H-SiC, IEEE Electron Device Letters 19 (1998) 487.


[3] Y. Nakanoa, R. Nakamura, H. Sakairi, S. Mitani, T. Nakamura, 690V, 1.00mWcm2 4H-SiC Double-Trench MOSFETs, Material Science Forum 717-720 (2012) 1069.


[4] T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi, Y. Yokotsuji, High Performance SiC Trench Devices with Ultra-low Ron, IEDM (2011) 26.5.1 – 26.5.3.


[5] A. Saha, J. A. Cooper, A 1-kV 4H-SiC Power DMOSFET Optimized for Low on-Resistance, IEEE Transactions on Electron Devices 54 (2007) 2786.


[6] S. Nakazawa, T. Okuda, J. Suda, T. Nakamura, T. Kimoto, Interface Properties of 4H-SiC (1120) and (1100) MOS Structures Annealed in NO, IEEE Transactions . Electron Devices 62 (2015) 310.

[7] T. Hatakeyama, Physical Modeling and Scaling Properties of 4H-SiC Power Devices, International Conference on Simulation of Semiconductor Processes and Devices (2005) 171.


[8] T. Kimoto, J. A. Cooper, Fundamentals of Silicon Carbide Technology, Wiley, Singapore, 2014, p.339.