Development of a High-Performance 3,300V Silicon Carbide MOSFET


Article Preview

To address stringent performance and reliability requirements of industrial and traction power conversion systems we have developed planar 3,300V MOSFETs at a 6-inch SiC-compatible silicon CMOS foundry. By optimizing the unit cell structure and using a deep current-spreading layer we demonstrated a low MOSFET specific on-resistance RDSA=11.2 mΩ·cm2 (ID=5A, VGS=15V) and fast switching for the baseline design. Robust short-circuit handling (7.5μs at Vds=1500V and 5.0μs at Vds=2200V) was demonstrated with an alternative unit cell design with RDSA=14.8 mΩ·cm2 (ID=5A, VGS=15V).



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




L. Fursin et al., "Development of a High-Performance 3,300V Silicon Carbide MOSFET", Materials Science Forum, Vol. 924, pp. 770-773, 2018

Online since:

June 2018




* - Corresponding Author

[1] X. Huang et al., Design and Fabrication of 3.3kV SiC MOSFETs for Industrial Applications,, ISPSD 2017 Proc., 255-258.

[2] K. Hamada et al., 3.3 kV/1500 A power modules for the world's first all-SiC traction inverter,,Japan. J. Appl. Phys. 54 (2015) 04DP07.

[3] M. Imaizumi and N. Miura, Characteristics of 600, 1200, and 3300 V Planar SiC-MOSFETs for Energy Conversion Applications,, IEEE Trans. Electr. Dev. 62-2, (2015) 390-395.

[4] H. Runhua et al., Design and fabrication of a 3.3 kV 4H-SiC MOSFET,, J. Semicond. 36-9 (2015) 094002.1-4.


[5] M. Furuhashi et al., Practical applications of SiC-MOSFETs and further developments,, Semicond. Sci. Technol. 31 (2016) 034003.1-9.


[6] S. Harada et al., 3.3-kV-Class 4H-SiC MeV-Implanted UMOSFET With Reduced Gate Oxide Field,, IEEE Electr. Dwv. Lett. 37(3) (2016) 314-316.

[7] L. Knoll et al., Robust 3.3kV Silicon Carbide MOSFETs with Surge and Short Circuit Capability,, ISPSD 2017 Proc., 243-246.

Fetching data from Crossref.
This may take some time to load.