Comparison of 3C-SiC and 4H-SiC Power MOSFETs

Abstract:

Article Preview

A comprehensive comparison of 3C-SiC and 4H-SiC power MOSFETs was performed, aimed at quantifying and comparing the devices’ on-resistance and switching loss. To this end, the relevant material parameters were collected using experimental data where available, or those obtained by simulation. This includes the bulk mobility as a function of doping density, the breakdown field as a function of doping and the MOSFET channel mobility. A device model was constructed and then used to calculate the on-resistance and breakdown voltage of a properly scaled device as a function of the doping density of the blocking layer. A SPICE model was constructed to explore the switching transients and switching losses. The simulations indicate that, for the chosen material parameters, a 600 V 3C-SiC MOSFET has an on-resistance, which is less than half that of a 4H-SiC MOSFET as are the switching losses in the device.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

774-777

Citation:

B. van Zeghbroeck and H. Fardi, "Comparison of 3C-SiC and 4H-SiC Power MOSFETs", Materials Science Forum, Vol. 924, pp. 774-777, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuits, third ed., John Wiley & Sons, New York, 2003 p.31.

[2] W. J. Schaffer et. al, MRS Proc. No. 339, Mat. Research Soc., Pittsburgh, PA, (1994) 595-600.

[3] H. Iwata, K. M. Itoh, Journal of Applied Physics 89 (2001) 11.

[4] W. E. Nelson, F. A. Halden, and A. Rosengreen, Journal of Applied Physics 37 (1966) 333.

[5] M. Yamanaka, et. al, J. Appl., Phys. 61 (1987) 599-603.

[6] M. Shinorara, et. al, Jap. J. Appl. Phys. 27 no. 3 (1988) L434-L436.

[7] S. Nishino, H. Suhara, H. Ono, H. Matsunami, J. Appl. Phys. 61 (1987) 4889-4893.

[8] E. Bellotti, H.-E. Nilsson, and K. F. Brennan, P. Ruden, Journal of Appl. Phys. 85 (1999) 3211.

[9] L. Tirino, M. Weber, and K. F. Brennan, Journal of Applied Physics 94 (2003) 423.

[10] P. G. Neudeck, D. J. Larkin, J.E. Starr, J. A. Powell, C. S. Salupo, and L. G. Matus, IEEE Trans. Electr. Dev. 41 (1994) 826.

[11] D. J. Spry, A. J. Trunek, P. G. Neudeck, Materials Science Forum, 457-460 (2004) 1061.

[12] J. Wan, M. A. Capano, M. R. Melloch, J. A. Cooper, Jr., IEEE Electr. Dev. Lett. 23 (2002) 8.

[13] M. Kobayashi, H. Uchida, A. Minami, T. Sakata, R. Esteve, A. Schöner, Materials Science Forum 717-720 (2012) 1109-1112.

[14] T. Hiyoshi, T. Masuda, K. Wada, S. Harada, T. Tsuno, and Y. Namikawa, SEI Techn. Review 77 (2013) 122-126.

[15] D. Lichtenwalner, V. Pala, B. Hull, S. Allen, and J. Palmour, Materials Science Forum 858 (2016) 671-676.

DOI: https://doi.org/10.4028/www.scientific.net/msf.858.671

[16] X. Yang, B. Lee, and V. Misra, IEEE Electr. Dev. Lett. 36 (2015) 312-314.

[17] Y. Zheng, T. Isaacs-Smith, A. C. Ahyi, and S. Dhar, IEEE Electr. Dev. Lett. 38 (2017) 1433-1436.

[18] Y. Kagawa, N. Fujiwara, K. Sugawara, R. Tanaka, Y. Fukui, Y. Yamamoto, N. Miura, M. Imaizumi, S. Nakata, S. Yamakawa, Materials Science Forum 778-780 (2014) 919-922.

DOI: https://doi.org/10.4028/www.scientific.net/msf.778-780.919

Fetching data from Crossref.
This may take some time to load.