First Demonstration of High Temperature SiC CMOS Gate Driver in Bridge Leg for Hybrid Power Module Application


Article Preview

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




M. H. Weng et al., "First Demonstration of High Temperature SiC CMOS Gate Driver in Bridge Leg for Hybrid Power Module Application", Materials Science Forum, Vol. 924, pp. 854-857, 2018

Online since:

June 2018




* - Corresponding Author

[1] A. Rahman, S. Roy, R. Murphree, R. Kotecha, K. Addington, A. Abbasi, H.A. Mantooth, A.M. Francis, J. Holmes, J. Di, High-temperature SiC CMOS comparator and op-amp for protection circuits in voltage regulators and switch-mode converters, IEEE J. Emerg. Sel. Top. Power Electron. 4 (2016).


[2] M.H. Weng, D.T. Clark, S.N. Wright, D.L. Gordon, M.A. Duncan, S.J. Kirkham, M.I. Idris, H.K. Chan, R.A.R. Young, E.P. Ramsay, N.G. Wright and A.B. Horsfall, Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide, Semicond. Sci. Technol. 32 (2017).


[3] H.G. Grimmeiss, Deep level impurities in semiconductors, Annu. Rev. Mater. Sci. 7 (1977) 341–76.

[4] M.I. Idris, M.H. Weng, H.K. Chan, A.E. Murphy, D.A. Smith, R.A.R. Young, E.P. Ramsay, D.T. Clark, N.G. Wright, A.B. Horsfall, Electrical Stability Impact of Gate Oxide in Channel Implanted SiC NMOS and PMOS Transistors, Materials Science Forum 897 (2017).


[5] S. Krishnaswami, A. Agarwal, Sei-Hyung Ryu, C. Capell, J. Richmond, J. Palmour, S. Balachandran, T. P. Chow, S. Bayne ; B. Geil, K. Jones, C. Scozzie, 1000-V, 30-A 4H-SiC BJTs with high current gain, IEEE Electron Device Lett. 26 (2005) 175–177.