Lateral GaN MISFETs Fabricated in Mg Ion Implanted Layer


Article Preview

This paper demonstrates ion implanted lateral GaN MISFETs using double ion implantation technology, which enables us to form Si ion implanted source/drain regions in Mg ion implanted p-well fabricated on free-standing GaN substrates. Maximum drain current of 39 mA/mm and maximum transconductance of 4.5 mS/mm for GaN MISFET with a gate length of 2 μm at an estimated Mg surface concentration of 2.2 × 1018 cm-3 were obtained. A threshold voltage was-0.5 V for the device. These results show that we successfully formed Si ion implanted n-type regions in the Mg ion-implanted layer and achieved innovative performance.



Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis




K. Sugamata et al., "Lateral GaN MISFETs Fabricated in Mg Ion Implanted Layer", Materials Science Forum, Vol. 924, pp. 919-922, 2018

Online since:

June 2018




* - Corresponding Author

[1] F. Roccaforte, P. Fiorenza, G. Greco, R.L. Nigro, F. Giannazzo, A. Patti and Mario Saggio, Phys. Status Solidi A 211, no. 9, 2014, p.2063–(2071).


[2] K. Nomoto, T. Tajima, T. Mishima, M. Satoh, and T. Nakamura, IEEE Electron Device Letters, vol. 28, no. 11, 2007, pp.939-941.

[3] H. Katayose, M. Ohta, K. Nomoto, N. Onojima, and T. Nakamura, Phys. Status Solidi C, vol. 8, no. 7-8, 2011, pp.2410-2412.


[4] W. Huang, T.P. Chow, Y. Niiyama, T. Nomura and S. Yoshida, 20th International Symposium on Power Semiconductor Devices and IC's, (ISPSD), 2008, pp.291-294.

[5] S. Gu, H. Katayose, K. Nomoto, T. Nakamura, A. Ohoka, K. Lee, W. Lu and P. M. Asbeck, Phys. Status Solidi C, vol. 10, no. 5, 2013, pp.820-823.


[6] B.N. Feigelson, T.J. Anderson, M. Abraham, J.A. Freitas, J.K. Hite, C.R. Eddy, F.J. Kub, Journal of Crystal Growth 350, 2012, p.21–26.

[7] F. Giannazzo, F. Iucolano, F. Roccaforte, L. Romano, M. G. Grimaldi, V. Raineri, Solid State Phenomena,  Vol. 131-133, 2007, pp.491-496.


[8] T. Oikawa, Y. Saijo, S. Kato, T. Mishima, T. Nakamura, Nuclear Inst. and Methods in Physics Research Section, B, vol. 365, Part. A, 2015, pp.168-170.

[9] H. Kasai, H. Ogawa, T. Nishimura, T. Nakamura, Phys. Status Solidi C, vol. 11, no. 3-4, 2014, pp.914-917.

[10] N. Ito, A. Suzuki, M. Kawamura, K. Nomoto, T. Kasai, T. Mishima, T. Inada, T. Nakamura, and M. Satoh, Research Society Symposium Proceedings, vol. 892, 2005, 0892-FF14-03.1.

[11] H. Ogawa, H. Kasai, N. Kaneda, T. Tsuchiya, T. Mishima and T. Nakamura, Phys. Status Solidi C, 2014, 1–6 / DOI 10.1002/pssc.201300440.

[12] T. Niwa, T. Fujii, and T. Oka, Appl. Phys. Express 10, 2017, 091002-1-4.

[13] Chin, V.W.L, T.L. Tansley, T. Osotchan, J. Appl. Phys. vol. 75, no. 11, 1994, pp.7365-7372.

[14] B. E-Kareh, Silicon Devices and Process Integration: Deep submicron and Nano-Scale Technologies, Heidelberg, Germany, Springer (2009).

[15] H. Ishikawa, S. Kobayashi, Y. Koike, S. Yamazaki, S. Nagai, J. Umezaki, M. Koike and M. Murakami, J. Appl. Phys. Vol. 81, no. 3, 1997, pp.1315-1322.