Lateral GaN MISFETs Fabricated in Mg Ion Implanted Layer

Abstract:

Article Preview

This paper demonstrates ion implanted lateral GaN MISFETs using double ion implantation technology, which enables us to form Si ion implanted source/drain regions in Mg ion implanted p-well fabricated on free-standing GaN substrates. Maximum drain current of 39 mA/mm and maximum transconductance of 4.5 mS/mm for GaN MISFET with a gate length of 2 μm at an estimated Mg surface concentration of 2.2 × 1018 cm-3 were obtained. A threshold voltage was-0.5 V for the device. These results show that we successfully formed Si ion implanted n-type regions in the Mg ion-implanted layer and achieved innovative performance.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

919-922

Citation:

K. Sugamata et al., "Lateral GaN MISFETs Fabricated in Mg Ion Implanted Layer", Materials Science Forum, Vol. 924, pp. 919-922, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] F. Roccaforte, P. Fiorenza, G. Greco, R.L. Nigro, F. Giannazzo, A. Patti and Mario Saggio, Phys. Status Solidi A 211, no. 9, 2014, p.2063–(2071).

DOI: https://doi.org/10.1002/pssa.201300558

[2] K. Nomoto, T. Tajima, T. Mishima, M. Satoh, and T. Nakamura, IEEE Electron Device Letters, vol. 28, no. 11, 2007, pp.939-941.

[3] H. Katayose, M. Ohta, K. Nomoto, N. Onojima, and T. Nakamura, Phys. Status Solidi C, vol. 8, no. 7-8, 2011, pp.2410-2412.

DOI: https://doi.org/10.1002/pssc.201001017

[4] W. Huang, T.P. Chow, Y. Niiyama, T. Nomura and S. Yoshida, 20th International Symposium on Power Semiconductor Devices and IC's, (ISPSD), 2008, pp.291-294.

[5] S. Gu, H. Katayose, K. Nomoto, T. Nakamura, A. Ohoka, K. Lee, W. Lu and P. M. Asbeck, Phys. Status Solidi C, vol. 10, no. 5, 2013, pp.820-823.

DOI: https://doi.org/10.1002/pssc.201200625

[6] B.N. Feigelson, T.J. Anderson, M. Abraham, J.A. Freitas, J.K. Hite, C.R. Eddy, F.J. Kub, Journal of Crystal Growth 350, 2012, p.21–26.

[7] F. Giannazzo, F. Iucolano, F. Roccaforte, L. Romano, M. G. Grimaldi, V. Raineri, Solid State Phenomena,  Vol. 131-133, 2007, pp.491-496.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.131-133.491

[8] T. Oikawa, Y. Saijo, S. Kato, T. Mishima, T. Nakamura, Nuclear Inst. and Methods in Physics Research Section, B, vol. 365, Part. A, 2015, pp.168-170.

[9] H. Kasai, H. Ogawa, T. Nishimura, T. Nakamura, Phys. Status Solidi C, vol. 11, no. 3-4, 2014, pp.914-917.

[10] N. Ito, A. Suzuki, M. Kawamura, K. Nomoto, T. Kasai, T. Mishima, T. Inada, T. Nakamura, and M. Satoh, Research Society Symposium Proceedings, vol. 892, 2005, 0892-FF14-03.1.

[11] H. Ogawa, H. Kasai, N. Kaneda, T. Tsuchiya, T. Mishima and T. Nakamura, Phys. Status Solidi C, 2014, 1–6 / DOI 10.1002/pssc.201300440.

[12] T. Niwa, T. Fujii, and T. Oka, Appl. Phys. Express 10, 2017, 091002-1-4.

[13] Chin, V.W.L, T.L. Tansley, T. Osotchan, J. Appl. Phys. vol. 75, no. 11, 1994, pp.7365-7372.

[14] B. E-Kareh, Silicon Devices and Process Integration: Deep submicron and Nano-Scale Technologies, Heidelberg, Germany, Springer (2009).

[15] H. Ishikawa, S. Kobayashi, Y. Koike, S. Yamazaki, S. Nagai, J. Umezaki, M. Koike and M. Murakami, J. Appl. Phys. Vol. 81, no. 3, 1997, pp.1315-1322.

Fetching data from Crossref.
This may take some time to load.