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Abstract. In this work the effects of stirring/vigorous shearing on matrix and graphite phase in
nodular cast iron melt during solidification were studied. Several experiments were conducted for
different cooling and stirring times. Samples were prepared and examinations of the microstructure
were conducted and compared using Leica Optical Microscope and Scanning Electron Microscope
(SEM). In addition, a chemical analysis of the graphite precipitate was performed using EDX
equipment mounted on SEM. Oxidation of the melt and formation of oxide nuclei during stirring
were observed and analysed. The influence of melt shearing on the structure, nodule count,
distribution, area fraction and on overall graphite precipitation was observed and examined with the
help of respective computer programs and softwares. Stirring resulted in increasing the nucleation
sites for graphite precipitation thereby increasing the nodule count and area fraction of carbide and
transforming the structure from pearlitic matrix to ferritic matrix.

Introduction

On a macro level, the casting process is a combination of fluid flow and heat transfer. Beside the
mass transfer, the convection has an important role in heat transfer and causes rapid removal of
superheat from the melt. Numerous flow mechanisms occur during pouring of melt into the cast. Im
et al. [1] have mentioned the concurrent filling in a two-dimensional square cavity. Various flow
systems involved during such processes are: (i) filling via gating system. (ii)) Momentum of flow
due to incoming melt and (iii) natural convection due to thermal and density gradient [2].

In continuous casting and during semisolid processing in thixotropic process [3], the convection
significantly affects the solid-liquid interface formation. Swaminathan et al. [4] have tracked the
air/liquid interface during pouring. The convection in the melt stream during teeming in mold
causes turbulence, in which air bubbles can be trapped and can enhance the oxidation of the melt
and transport these oxides further into the mold cavity.

Inoculation can be described as the addition of nuclei to the molten cast iron, thereby increasing
the number of nucleation sites on which eutectic graphite precipitates during the solidification
process. The main aim is to influence the microstructure in a specific way. Nuclei are usually fine
oxide particles, <4 pm in size, which act as graphite crystallization sites. There are several theories
concerning inoculation, out of which the oxide nucleation is thought to be the most appropriate one,
[9, 10, 11]. As per this theory, SiO; particles are precipitated, and act as nuclei. Precipitation of
these particles is dependent on the formation of other foreign nuclei. These foreign nuclei are
created by the elements which have high affinity for oxygen. Mg is added to the cast iron as an
inoculant [5]. Mg has high affinity for oxygen and will readily react with the absorbed oxygen in
the melt and form MgO particles. These particles act as nuclei on which graphite deposits. The
ductility, strength and toughness of nodular cast iron is attributed to the size and spacial distribution
of graphite phase [5].

In a previous study [14] the cast structure had been analysed in downhill and uphill casted insert.
Samples from different positions in the cross sections of the inserts were investigated. It was
observed that the average number of nodules per mm? in downhill casting is 38% more than in
uphill casting. It was proposed that since the turbulence in downhill casting as compared to the
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uphill casting is very high, so beside the fact that an inert gas atmosphere is created while casting,
the magnesium in the melt has a very high affinity for oxygen and enough oxygen is still present in
the mould so more oxides are formed due to the violent movement of melt, which act as nuclei for
graphite nodule precipitation. We also observed string-like oxide structures on which graphite had
precipitated.

Convection in the melt during solidification can change the aspect of heat and mass transfer and
also increases the interaction of oxygen with the melt, which can affects the microstructure and
distribution of the graphite. [8]. for this purpose we have mechanically stirred the melt during
solidification for different durations and investigated the formation of different oxides and its effect
on the graphite morphology.

Methodology and Experimental Work

Equipment

Fig.1 illustrates the experimental arrangement. Stirring was conducted by a quartzes rod fitted on
a variable speed drilling machine. Quartz cruicibles 90mm length and 28mm internal dia were
placed in graphite susceptor. Special resistance furnaces were designed and developed to control the
melt temperature and the cooling rate during stirring. Two different furnaces were built, the furnace
initially built had a limitation of heating the crucibles to 650°C and could hold only one cruicible at
a time. Some experiments were conducted using a resistance furnace which could hold two
crucibles at a time, stirring was conducted in one of the crucibles and other was used as a reference
to compare the un-stirred structure. The crucibles could be heated to 1200°C.
Experiments were conducted at Roslagsgjuteriet AB in Herrdng, Sweden. Table 1 gives the
composition of the melt. The melt temperature during pouring in the mold was approximately
1200°C. The samples were stirred at 2100 RPM.

Table. 1 Composition of the melt.
C Si Mn |P S Cu |Cr Mg | Mo |Ni Al \Y% T

3.71 | 1.95 |0.17 | 0.01 |0.01 |0.02 |0.03 |0.05 |0.00 |0.05 001 |0.01 |0.01

Details of the experimental conditions are given in Table 2. The crucibles were preheated at
different temperatures to vary the solidification time and thereby altering the stirring time. All the
samples were initially cooled in the furnace till around 600 °C and then the crucibles were taken out
of the furnace and cooled in ambient conditions. Graphite was added to the ROSS8 to see the carbon
content and study its effect.

Table. 2 Experimental condition.

Sample # Stirring Inoculant Graphite Crucible Comments
Time Added temp. before
pouring

ROS 1 no stirring added - - As cast
ROS 2 10 sec added - Room temp. -

ROS 3 27 sec added - Room temp. -

ROS 4 28 sec added - 450°C -

ROS 5 42 sec. added - 650°C -

ROS 6 85 seconds added - 800°C -

ROS 8 100 seconds added 15 grams 1000°C -

Investigation

Three cross sections from top, middle and bottom areas were cut, mounted and prepared for
optical microscopy by successive grinding and then polished by 3 and 1 pm diamond paste and
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etched with 2 % Nital. Microprobe analysis was conducted using Hitachi SEM and ESPIRIT 2.0
software was used to analyze each peak that appeared during micro analysis.
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Fig. 1 Schematic illustration of the configuration of the equipment during experiments.

The representative area was carefully selected for observation; in stirred samples, the areas most
affected by stirring, i.e. the lower central areas were selected. Micrographs of un-etched samples
were taken using Scattered Electron Microscope (SEM).

The size distribution, count and % area fraction were measured using Leica Qwin standard
version 3.51. The count and area fraction of all graphite particle shapes and nodular shapes were
recorded separately as per ISO standards. The nodule sizes which were recorded in the given
samples were quite small and were distributed in a comparatively narrow size range, but the size
ranges used by ASTM for classification of nodule are very wide and are not that descriptive; for this
reason, we used narrow size ranges which were more expressive.

Results

Figs. 2 (a, b) show the matrix of an unstirred sample, the inoculant was added prior to pouring in
the mould. Graphite nodules are surrounded by ferrite in a pearlitic matrix. Carbides are present in
fishbone and other typical morphologies.

Sample ROS 2 number of nodules has increased but several of these nodules have morphologies
other than nodular Fig.3a. Most of the nodules are surrounded by ferrite grains but some last
precipitated nodules are also surrounded by pearlite. The matrix is pearlitic. Some stringy elongated
structures are present in Fig. 3b. Fine flakes of graphite are also observed. Some agglomeration of
graphite nodules was also observed. Very few carbides are present in the area most affected by
stirring. Mostly carbides including ledeburite are present along the wall of the crucible, the area
which is less affected by stirring. Sample ROS 3 as shown in Fig. 4 (a, b), mostly the structure is
similar to the sample Ros 2. But we see the increase in carbides precipitated in the most affected
area and also an increase in the amount of chunky graphite. Sample ROS 4 shown in Fig.5 (a,
b).The structure has completely transformed from a pearlitic matrix to a ferritic matrix with a few
smaller intergranular pearlitic precipitations.

Precipitation of graphite nodules has increased in the stirred area and we see large number of
small nodules formed along with other morphologies (Fig. 5a). The number of nodules has
increased and we see quite a few large and small agglomerated nodules. Large string-like structures,
both branched and straight can also be seen. Very few carbides are present in the affected area, but
we can observe the precipitation of carbides along the wall of the crucible; some precipitation of
graphite was observed within these carbides. Sample ROS 5 as shown in Fig. 6 (a, b) the matrix is
completely ferritic. No pearlitic precipitation was observed. Ferrite matrix has very fine grains.
Very few carbides has precipitated as compared to sample ROS 4. Precipitation of some
undercooled/vermicular graphite was observed (Fig. 6a). Fig.7 of sample ROS 6 shows a ferritic
matrix. Most of the graphite has precipitated as flakes with some nodular and chunky precipitation.
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Fig. 2 (a,b), Sample ROS 1 a) LOM micrograph - Graphite nodules surrounded by ferrite in
pearlitic matrix. Carbides have precipitated. b) SEM micrograph — Nodules in variable sizes are
seen.
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Fig. 3 (a,b) Sample ROS 2. a) SEM micrograph and b) LOM micrograph- Graphite nodules and
stringy graphite surrounded by ferrite in pearlitic matrix. Some graphite flakes precipitated
within ferrite phase.
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Fig. 4 (a,b) LOM micrographs, Sample ROS 3 Increase in nodule count. Compacted and stringy
graphite have precipitated. Carbides fraction has increased. Pearlitic matrix.

The reference, which was cooled in the same conditions but without any stirring, shows
precipitation of nodular graphite, some of them are significantly large. In Fig. 8 of sample ROS 8
shows that the matrix is ferritic, with large portion of graphite precipitated as under cooled graphite
and some vermicular flakes, very few nodules are visible.
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Fig. 5 (a,b) a) LOM micrograph, b) SEM micrograph, Sample ROS 4.Ferrite matrix. Small
interdendritic pearlite precipitated which is marked by arrows.
Increased nodule count in variable sizes.
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Fig. 6 (a,b) a) SEM micrograph and b) LOM micrograph, Sample ROS 5. Fine grain ferritic

matrix, no pearlitic precipitation observed. Fewer carbides have precipitated as compared to sample
ROS 4.
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Fig. 7 LOM micrograph, Sample ROS 6. Fig. 8 LOM micrograph, Sample ROS 8. Ferrite
Ferrite matrix, most of the graphite has matrix, graphite precipitated as under cooled
precipitated as flake and compacted graphite graphite and some vermicular flakes

Chemical analysis

The micro analyses were conducted on the polished and etched sample using EDX. The line
analysis conducted on the string like structure precipitated during solidification of the stirred melt.
It was observed that the bulk of it consists of carbon whereas the central area of these cross-sections
of strings contained either a mixture of MgO, FeO and SiO,, or a complex oxide of Mg Fe and Si.
Two types of strings were observed: rough-edged branched strings Fig. 9a and smooth-edged
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strings Fig. 10a. Figs. 9b and 10b shows two of the representative results of the line analysis of
these string-like structures.

Line scan across the graphite string b
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Fig. 10 (a,b) a) Shows the line scan path, b) Result of line scan analysis of smooth surface string.

Graphite morphology and distribution

From the graphs in Fig 11 and 12, we can observe that the graphite nodule/particle count and
area fraction has increased by increasing in stirring time and prior heating of the crucible. Since
sample ROS 6 and ROS 8 graphite precipitated as flakes so they are not included in this analysis.

Discussions

We have observed that the count of nodules plus other particles has increased significantly in the
stirred samples as compared to the non-stirred sample. This increase in the graphite particles /
nodules precipitation can be caused due to the formation of oxides during stirring of the melt, due to
increase interaction of melt with the environment which increases the oxygen content in the melt
hence causing the precipitation of oxides. These oxide particles act as the nuclei for the growth of
the graphite nodules. The precipitation of higher number of oxide particles increases the number of
graphite precipitation sites. This causes increase in the nodule count. But the stirring also causes
the evaporation of Mg, hence decreasing the Mg content of the melt which causes precipitation of
significant number of non-nodular graphite particulate [13].
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Fig.11 Size distribution, count/mm?2 and the % area fraction of the all the graphite morphology
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Fig.12 Size distribution, count/mm? and the % area fraction of the graphite nodule precipitated.

String like structure had formed in the stirred sample. Which on chemical analysis showed that
the oxides of Mg, Si and Fe, were present at the center of these strings and these oxides were
surrounded by graphite. It seems that initially Fe and Si oxides precipitated in the form of strings at
the surface, since at the surface non-equilibrium condition is created due to the interaction of the
melt with the atmosphere. The Fe and Si oxides formed during this process are unstable oxides
which decomposed and formed MgO [15]. During stirring these stringy oxides were dispersed in
the bulk and some of them fragmented into smaller particles, these oxide particles and stringy
oxides acted as nuclei for the deposition of graphite. The fact that there are no other graphite
precipitated in the close vicinity of these strings shows that they were precipitated during early
stages of solidification.

It will also be possible that small MgO particles are formed around the strings when they are
transformed to more stable oxide. A process similar to the process illustrated by Fredriksson et al
[12] when dissolving graphite in Fe-Ti alloy, giving a large number TiC nuclei. The oxide particles
formed due to the stirring in the melt act as the inoculant and precipitate most of the graphite from
the matrix discouraging the formation of cementite. Probably this is the reason why we see an
increase in precipitation of graphite fraction by increasing the stirring time and decreasing the
cooling rate. By increasing the precipitation of graphite particles we decrease the diffusion distance
for carbon atoms, thereby increasing the graphite phase.

Transformation to ferritic matrix might be caused due to slow cooling of the sample, since the
crucible was heated ( figures 5 to 8) before pouring the melt and then the furnace was switched off
after stirring operation but the crucible was left in the furnace to cool down till it reached below
eutectoid temperature. After that the crucible was taken out and cooled in ambient conditions. The
conversion from perlite to ferrite matrix can also be caused due to coarseness of structure, the finer
the structure lesser is the diffusion distance which favors the ferritic matrix. Diffusion is also
affected by the cooling rate; lower cooling rate gives large time for diffusion. Also since the nodule
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count is increased due to the increase in the amount of nuclei available. This decreases the diffusion
distance of carbon atoms, hence more carbon is diffused out of the matrix, increasing the area
fraction of graphite precipitated. It seems larger amount of the carbon in stirred area has precipitated
out of the matrix, due to the transformation of austenite phase to the ferrite phase, which can lower
the carbide and martensite precipitation. Increase in volume fraction might also be a result of more
ferrite in the matrix as can be observed in samples ROS 4 and 5.

During stirring the Mg present in the melt reacted with the environment and evaporated, this is
also verified due to the fact during stirring lots of sparks were observed coming from the melt. Also
the oxygen content of the melt increases relative to the Mg. content. That could be the reason for the
formation of graphite shapes other than nodular. So we observe the decrease in nodularity in general
and where the stirring was continued for longer time period the graphite has precipitated in other
forms.

Conclusion

By stirring we can increase the number of nuclei which increases the nucleation sites for graphite
precipitation thereby increase the nodule count and precipitation of the graphite phase and transform
the structure of nodular cast iron, hence affecting the mechanical properties of the alloy. More
experiments are needed to be conducted to fully understand the mechanism and effects of stirring
on the melt. Also there is need to find the optimum conditions.
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