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Abstract. As part of moving towards a sustainable production of diesel engines for heavy vehicle
applications, the ability to predict casting defects has become ever so important. In order to model
the solidification process for cast components correctly, it is of essence to know how the material
will actually behave. To produce sound castings, often of complex geometry, the industry relies on
various simulation software for the prediction and avoidance of defects. Thermophysical properties,
such as density, play an important part in these simulations.

Previous measurements of how the volume of liquid grey iron changes with temperature has
been made with a conventional dilatometer. Measurements have also been made in the austenitic
range, then on iron-carbon-silicon alloys with a carbon content lower than 1.5 wt%. Based on these
measurements the density variations during solidification were calculated. The scope for this paper
is to model the volume changes during solidification with the control volume finite difference
method, using data from the density measurements.

Introduction

Solidification of cast metals is to a large extent a question of heat transfer. Thus, the software
used in casting simulation is most often based on the heat transfer laws. These laws consist of heat
balances and, within them, relations of the so called thermophysical properties. One such property
is density, which plays an important part for the change of heat content per time unit. Density
variations during solidification is also regarded as one of the factors influencing the formation of
shrinkage porosity. [1] However, data on liquid density variation of cast iron is scarce and quite
widespread over time. Measurements of liquid density have also been carried out with a number of
different methods. [2] The measurement methods chosen in this work has been a conventional push-
rod dilatometer from Netszch, used for 1D-measurements, and an instrument developed to measure
the volume changes in all three directions.

With the increasing use of simulation software to predict casting outcomes it has become more
and more important to base the calculations on reliable data, to obtain reliable results, since the
accuracy of these data determines the accuracy of the whole simulation [3, 4]. A thorough
knowledge of density variations will enable simulation of heat conduction, solidification, elastic-
plastic deformation and fluid flow, which in turn will improve product quality [5].

The aim of the present investigation has therefore been to build a model in order to simulate
volume change based on heat distribution in cylindrical and spherical geometries, and to compare
these results to data from measurements performed on such bodies. The purpose being to enable
further modelling of the volume change during the solidification process in the mushy zone.

Theoretical Background

Heat transfer can occur in three ways: conduction, convection and radiation. [6] Since the focus
of this work will be on heat transfer by conduction, the other modes, although of importance in
casting simulation, will not be further discussed.
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Heat transfer by conduction. Conduction is best described as a heat flow from the high
temperature region to the low temperature region. The heat flow per unit area is proportional to the
temperature gradient, with the thermal conductivity as proportionality constant. [6] The defining
equation for thermal conductivity is expressed as

— _ga?”
q=-kAS, (1)

also known as Fourier’s law. However, heat will not flow unhindered, therefore thermal resistances
must be introduced. If the rate of heat transfer is considered as a flow and the factors thermal
conductivity, thickness of the material and the area through which the heat transfer occur, together
will form a resistance to this flow, the heat flux can be described as:

Thermal potential dif ference

g = 2)

Thermal conductive resitance ’

which can be regarded as an analogy to Ohm’s law.
For the use of numerical methods, such as the Control Volume Finite Difference Method (CV-
FDM), control volumes are created, over which the heat balance is written.

Heat distribution in cylindrical and spherical samples. For the purpose of simulation of heat
distribution in cylindrical and spherical samples of grey cast iron from the dilatation experiments
described above, polar cylindrical and spherical co-ordinates would present an advantageous way of
reaching the solution. Equations describing the heat transfer in these geometries, using only the
radius as descriptive space parameter, will be developed further below. For a more detailed
description, please turn to refs. [6] and [7] .

Modelling. Numerical modelling of casting processes often employs the Control Volume Finite
Difference Method [8], also known as the Finite Volume Method (FVM), or the Finite Element
Method (FEM) [9-11]. (There are also models based on the Phase Field, Cellular Automaton and
CALPHAD [12] methods, which could be used in combination with the earlier stated methods.)

Method

Cylindrical polar coordinates. The control volumes in the cylindrical polar co-ordinate form
would be cylinder caps of thickness Ar; and the distance from the center of the cylinder to point “i”
would be 1j, (fig. 1).

Figure 1. Nodes and mesh in the cylindrical polar co-ordinate system.

The heat fluxes over the control volumes are expressed as in eq. 2 and the change of heat content
per time unit will be the sum of the heat fluxes and the heat generation in the control volume.
Change of heat content per time unit can also be expressed as

. ar
Q="Vpey .. (3)
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Combining these expressions and discretizing the time derivative will result in eq. 4

ATy _ Tia—Ti | Tiga—T; | 2 '
Vl(pcp)l At Ri—1oi + Rinits + Qgen,L 4)

In the case of cylindrical co-ordinates, the size of the two resistance terms in the control volume

is different. If the height of the cylinder is Az and the resistances are inserted, eq. 4 will be
expressed as:

T'AT'( C )ﬂ = Ti—1—Ti + Ti+1-Ti + Qgen,i (5)
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The transmission resistance terms on the interface are however only used in case of heat transfer
between different materials.

Spherical polar co-ordinates. The control volume in the spherical system will be spherical shells,
however, the thickness of the shell will be Ar; and the distance from the center of the sphere to point
“1” will be 1j, just as in the cylindrical system.

The numerical definition of heat conduction in spherical co-ordinates will be the same as in the
cylindrical case, i.e. eq. 4. However, the volume will be different, as expressed by eq. 6,

V = am (r2ar + 25 6)
=Am \rfAr +— ),
as well as the resistance terms. [7] This will yield a different governing equation:
3
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The implicit method. There are different ways to solve the governing equation, however, the
implicit method has turned out to be stable in most cases. In order to solve the equation numerically
it has to be expressed in a form that will suit the application. [6] The capacity and conductivity
functions are therefore introduced.

The capacity function, cylindrical co-ordinates, is stated in eq. 8.

c 1

H = rAr(pcp)i ;- (®)
The conductivity function, cylindrical co-ordinates, is stated in eq. 9.

HEon = ! . )

Ti_1+1/2ATi_1) ( T )
ln( Ti—1 M) Mg
ki—1 ' k; ' ri—%Ar;

The capacity function, spherical co-ordinates, is stated in eq. 10.

Cap __ 2 AT3 1
H™ = (ri Ar; + 1—2‘) (pcp)iﬁ. (10)
The conductivity function, spherical co-ordinates, is stated in eq. 11.
1
Hicon =1 1 1 T . (11)
Ti—q Ti—g+%AT_q Ti—%ATy Ty M
ki1 Lk (rmary)?

“Time marching.” Supposing the temperature field at time ¢ is known, the temperatures at time
t+A4t could be solved by the governing equation together with the boundary conditions formulated
for points 1 and n. [6] The equation for the numerical solution by the implicit method will have
three unknown temperatures to solve, here put on the left-hand side of the equation:
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in case of cylindrical co-ordinates: B = 2mAz, (13)
and in case of spherical co-ordinates: B = 4m. (14)

The solution will be reached by collecting the equations in an equation system, written in matrix
form. For the nodes 2 to n-1, eq. 12 is applied and for the outer nodes equations formulated with the
boundary conditions will be used. The equation system will be tridiagonal, best solved by the tri-
diagonal matrix algorithm procedure.

Both heat capacity and heat conductivity are temperature dependent, since the material
parameters, among them the density, are temperature dependent. They should therefore change with
each temperature.

Enthalpy change. During solidification, release of a certain amount of heat will occur. The way to
model this and to ensure that all of the latent heat is released, is with the help of a push-back
algorithm [6], ensuring that the temperature step is not to large at the beginning and the end of
solidification (and thereby omit the increased portion of the c, value, or using a too large cp,
respectively).

The amount of heat released could be written:

;‘Ie(lased = fSpL' (15)
By differentiating eq. 15, rewriting and inserting it into the heat conduction equation we get the
expression:

afs T
(e —2=L) p 20 = V(kVD). (16)
This yields that in the solidification interval the c,-value must be adjusted:
C;olidification =c, — %L. (17)
Experimental Work

Volume change and density measurements. For the 1D-measurements a conventional push-rod
dilatometer from Netzsch (DIL 402C) was used. Measurement method and results have been
described in depth elsewhere [13] and will here only be explained in brief. Grey iron alloys of
varying carbon contents were cast and specimens in the form of small cylinders (weighing
approximately 2.8 g) were machined. These samples were aimed for testing in the liquid state, in a
range from approximately 100 °C above liquidus temperature down to liquidus temperature. The
samples were first encased in an aluminum oxide cylinder with a piston at each end, transferring the
movements of the sample to the push rod. Data could thus be logged for length change at the
corresponding temperature. In order to measure the contraction behavior of austenite, a series of
steel alloys with varying carbon content were cast, and likewise machined into cylinders. These
samples were tested in the temperature range where the material would be austenitic. Testing of
these samples was performed without the aluminum oxide container. The calculations of the density
have been based on the assumption of material isotropy. Thus, the axial expansion could be set as
proportional to the expansion of the diameter. The density of a cylindrical sample (at an arbitrary
temperature) can be written as:

_ 4xmg
P = Gy (18)
The density calculations for the liquid samples build on the same assumption, however, in the case
of radial expansion, these samples were confined by the container. The diameter was therefore set
to the inner diameter of the aluminum oxide container at the same temperature. It may here also be
pointed out that because of the position of the thermocouple (near the outer wall of the aluminum
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oxide container) the sample temperature will deviate from the temperature logged by the
instrument. The temperature difference depends largely on the thermal properties of the aluminum
oxide.

For the 3D-measurements, a spherical vessel filled with liquid grey cast iron was used. [14] The
volume change of the sphere was measured at three points at the surface and an average of the
change in radial direction was calculated at each timestep.

The chemical composition of the alloys used in the simulation can be found in table 1.

Table 1. Chemical composition of the alloys used in the simulations. Unit in wt%.

Sample C Si Mn P S
Cylindrical, liquid range 3.11 1.82 048 0.02 0.02
Cylindrical, austenitic range 0.59 1.75 0.41 0.004 0.02

Simulation. Two different scripts, written and executed in MATLAB and based on the described
calculation method, were used, one simulating the cylindrical case and the other simulating the
spherical case. Both, however, were structured in the same way, calculating the temperature
distribution by equation 12 and taking the enthalpy change into account. In the case of the
cylindrical sample, a uniform mesh of Ar = 0.325 mm was used. The mesh contained 10 metal cells,
six cells in the mold and two for the surrounding atmosphere. In order to simulate the temperature
distribution, chosen values were applied. These can be found in table 2. For the simulation of the
spherical sample a mesh of Ar =0.5 mm was applied. The mesh contained 33 metal cells, one for the
mold and two for the surrounding air.

Table 2. Property values applied in the simulation.

Pcasting Cp, casting Lsolidiﬁcation Lsol state transf Tliq Tsol
[kg/m’] [J/kgK]| [J/kg] [J/kg] [°C] [°C]
7000 700 -240*%10°  -80*10° 1230/1238 1155

Simulating the cylindrical case, the experimentally measured density data in the liquid and the
austenitic ranges were read into the program and the temperature in the first surrounding-air node
was put equal to the temperature measured in the experiment. The volume of the simulated
cylindrical sample was calculated by:

Mq

V() = 2L, (19)
at each timestep, based on the temperature in the metal cells, the weight of the sample (measured
after the experiment) and the density at the temperature in question. The simulated volume was then
compared with the volume curve from the experiment.

For the spherical samples the value for the weight was chosen to 145 g. The calculation of the
volume in the liquid and austenitic ranges was performed in the same way as for the cylindrical
samples, apart from that the temperature field was assigned to the mold cell.

Results

The results of the simulation of the cylindrical samples are presented in figures 2, 3 and 4. Since
the result from the dilatometer experiments on this particular alloy showed two different behaviors,
both types has been used in the comparison (samples C325-7 and C325-20).
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Figure 2. Simulated volume and volume curve  Figure 3. Simulated volume and volume curve
from measurement for the cylindrical samples  from measurement for the cylindrical samples
(Sample C325-7). (Sample C325-20).
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The simulated volume and the measured volume for the spherical sample is presented in figures
5 and 6. The volume has been calculated based on the data from the same two density
measurements as in figure 2, 3 and 4.
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Figure 5. Simulated volume and volume curve  Figure 6. Simulated volume and volume curve

from measurement for the spherical samples from measurement for the spherical samples
(Density data from C325-7). (Density data from C325-20).
Discussion

The discrepancy between the simulated volume and the volume curve from the measurement in
pictures 3 to 7 could be found in the measurement of the temperature in the Netzsch dilatometer.
Since the thermocouple is placed outside of the container and the measurements were performed on
a cooling liquid, the temperature in the liquid metal would be higher than the thermocouple is
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logging. The magnitude of the temperature difference should therefore be investigated and taken
into account in the further modelling. The other modes of heat transfer have not been taken into
account, since it was not the scope at this stage, but these may also have an impact on the results.

In the austenitic range, in all of the pictures, the simulated curve follows the contraction of
austenite with a carbon content of 0.59 wt% carbon. Segregation effects has thus not been taken into
account. The graphite fraction, which in the actual measurements has got an influence, has likewise
not been modelled. Further modelling should therefore include these areas. Based on this work, the
volume changes in the mushy zone will be modelled, thereby obtaining a deeper understanding of
the mechanisms behind shrinkage porosity.

Conclusion

It is possible to model and simulate volume change based on temperature distribution and
measured density data with good results.

It is likely that the addition of a graphite fraction to the curve in the austenitic range will position
the simulated curve closer to the measured one.

The present investigation constitutes a good basis for further modelling of volume changes
during the earlier stages of solidification.

Nomenclature
q Diffusive heat flow (heat flux) perpendicular through the surface of
the arca [W]
k Thermal conductivity [W/(mK)]
A Area of the surface [m’]
T and AT Temperature and temperature difference [K] or [°C]
X Descriptive space parameter perpendicular to the surface [m]
r Radius [m]
0 Change of heat content per unit time [W]
14 Volume [m’]
p Density [kg/m’]
Cp Specific heat [J/(kgK)]
t and At Time and time difference [s]
fs Fraction solid
L Total solidification heat [J/kg]
0 gen Volumetric heat generation [W/m’]
M;_1.; and M;_; 4 Heat resistances between node i-1 and i and between 1 and i+1
Qelased Heat released [J/m’]
V2T Laplace operator [°C/m’]
my Mass [kg] (weighed in air)
d Diameter [m]
/ Length [m]
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