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Abstract. As part of moving towards a sustainable production of diesel engines for heavy vehicle 
applications, the ability to predict casting defects has become ever so important. In order to model 
the solidification process for cast components correctly, it is of essence to know how the material 
will actually behave. To produce sound castings, often of complex geometry, the industry relies on 
various simulation software for the prediction and avoidance of defects. Thermophysical properties, 
such as density, play an important part in these simulations. 

Previous measurements of how the volume of liquid grey iron changes with temperature has 
been made with a conventional dilatometer. Measurements have also been made in the austenitic 
range, then on iron-carbon-silicon alloys with a carbon content lower than 1.5 wt%. Based on these 
measurements the density variations during solidification were calculated. The scope for this paper 
is to model the volume changes during solidification with the control volume finite difference 
method, using data from the density measurements.  

Introduction 
Solidification of cast metals is to a large extent a question of heat transfer. Thus, the software 

used in casting simulation is most often based on the heat transfer laws. These laws consist of heat 
balances and, within them, relations of the so called thermophysical properties. One such property 
is density, which plays an important part for the change of heat content per time unit. Density 
variations during solidification is also regarded as one of the factors influencing the formation of 
shrinkage porosity. [1] However, data on liquid density variation of cast iron is scarce and quite 
widespread over time. Measurements of liquid density have also been carried out with a number of 
different methods. [2] The measurement methods chosen in this work has been a conventional push-
rod dilatometer from Netszch, used for 1D-measurements, and an instrument developed to measure 
the volume changes in all three directions.  

With the increasing use of simulation software to predict casting outcomes it has become more 
and more important to base the calculations on reliable data, to obtain reliable results, since the 
accuracy of these data determines the accuracy of the whole simulation [3, 4]. A thorough 
knowledge of density variations will enable simulation of heat conduction, solidification, elastic-
plastic deformation and fluid flow, which in turn will improve product quality [5].  

The aim of the present investigation has therefore been to build a model in order to simulate 
volume change based on heat distribution in cylindrical and spherical geometries, and to compare 
these results to data from measurements performed on such bodies. The purpose being to enable 
further modelling of the volume change during the solidification process in the mushy zone. 

Theoretical Background 
Heat transfer can occur in three ways: conduction, convection and radiation. [6] Since the focus 

of this work will be on heat transfer by conduction, the other modes, although of importance in 
casting simulation, will not be further discussed. 
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Heat transfer by conduction. Conduction is best described as a heat flow from the high 
temperature region to the low temperature region. The heat flow per unit area is proportional to the 
temperature gradient, with the thermal conductivity as proportionality constant. [6] The defining 
equation for thermal conductivity is expressed as   

𝑞𝑞 = −𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ,             (1) 

also known as Fourier’s law. However, heat will not flow unhindered, therefore thermal resistances 
must be introduced. If the rate of heat transfer is considered as a flow and the factors thermal 
conductivity, thickness of the material and the area through which the heat transfer occur, together 
will form a resistance to this flow, the heat flux can be described as: 

𝑞𝑞 = −𝜕𝜕ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒 𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑑𝑑𝑒𝑒
𝜕𝜕ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 𝑒𝑒𝑒𝑒𝑟𝑟𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑑𝑑𝑒𝑒

 ,        (2) 

which can be regarded as an analogy to Ohm’s law. 
For the use of numerical methods, such as the Control Volume Finite Difference Method (CV-

FDM), control volumes are created, over which the heat balance is written.  
Heat distribution in cylindrical and spherical samples. For the purpose of simulation of heat 
distribution in cylindrical and spherical samples of grey cast iron from the dilatation experiments 
described above, polar cylindrical and spherical co-ordinates would present an advantageous way of 
reaching the solution. Equations describing the heat transfer in these geometries, using only the 
radius as descriptive space parameter, will be developed further below. For a more detailed 
description, please turn to refs. [6] and [7] . 
Modelling. Numerical modelling of casting processes often employs the Control Volume Finite 
Difference Method [8], also known as the Finite Volume Method (FVM), or the Finite Element 
Method (FEM) [9-11]. (There are also models based on the Phase Field, Cellular Automaton and 
CALPHAD [12] methods, which could be used in combination with the earlier stated methods.) 

Method 

Cylindrical polar coordinates. The control volumes in the cylindrical polar co-ordinate form 
would be cylinder caps of thickness Δri and the distance from the center of the cylinder to point “i” 
would be ri, (fig. 1).   

 

 
Figure 1. Nodes and mesh in the cylindrical polar co-ordinate system. 

The heat fluxes over the control volumes are expressed as in eq. 2 and the change of heat content 
per time unit will be the sum of the heat fluxes and the heat generation in the control volume. 
Change of heat content per time unit can also be expressed as  

𝑄̇𝑄 = 𝑉𝑉𝑉𝑉𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

 .           (3) 

z 
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Combining these expressions and discretizing the time derivative will result in eq. 4 
𝑉𝑉𝑝𝑝(𝑉𝑉𝑐𝑐𝑝𝑝)𝑝𝑝

∆𝜕𝜕𝑖𝑖
∆𝑝𝑝

= 𝜕𝜕𝑖𝑖−1−𝜕𝜕𝑖𝑖
𝑅𝑅𝑖𝑖−1→𝑖𝑖

+ 𝜕𝜕𝑖𝑖+1−𝜕𝜕𝑖𝑖
𝑅𝑅𝑖𝑖→𝑖𝑖+1

+ 𝑄̇𝑄𝑔𝑔𝑒𝑒𝑝𝑝,𝑝𝑝         (4) 
In the case of cylindrical co-ordinates, the size of the two resistance terms in the control volume 

is different. If the height of the cylinder is Δz and the resistances are inserted, eq. 4 will be 
expressed as: 

 𝑟𝑟𝑝𝑝∆𝑟𝑟𝑝𝑝(𝑉𝑉𝑐𝑐𝑝𝑝)𝑝𝑝
∆𝜕𝜕𝑖𝑖
∆𝑝𝑝

= 𝜕𝜕𝑖𝑖−1−𝜕𝜕𝑖𝑖
ln �

𝑟𝑟𝑖𝑖−1+½∆𝑟𝑟𝑖𝑖−1
𝑟𝑟𝑖𝑖−1

�

𝑘𝑘𝑖𝑖−1
+
𝑙𝑙𝑙𝑙�

𝑟𝑟𝑖𝑖
𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖

�

𝑘𝑘𝑖𝑖
+
𝑀𝑀𝑖𝑖−1→𝑖𝑖
𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖

+ 𝜕𝜕𝑖𝑖+1−𝜕𝜕𝑖𝑖
ln �

𝑟𝑟𝑖𝑖+½∆𝑟𝑟𝑖𝑖
𝑟𝑟𝑖𝑖

�

𝑘𝑘𝑖𝑖
+
𝑙𝑙𝑙𝑙�

𝑟𝑟𝑖𝑖+1
𝑟𝑟𝑖𝑖+1−½∆𝑟𝑟𝑖𝑖+1

�

𝑘𝑘𝑖𝑖+1
+

𝑀𝑀𝑖𝑖→𝑖𝑖+1
𝑟𝑟𝑖𝑖+1−½∆𝑟𝑟𝑖𝑖+1

+ 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑙𝑙,𝑖𝑖

2𝜋𝜋∆𝑧𝑧
   (5)  

The transmission resistance terms on the interface are however only used in case of heat transfer 
between different materials.  
Spherical polar co-ordinates. The control volume in the spherical system will be spherical shells, 
however, the thickness of the shell will be Δri and the distance from the center of the sphere to point 
“i” will be ri, just as in the cylindrical system. 

The numerical definition of heat conduction in spherical co-ordinates will be the same as in the 
cylindrical case, i.e. eq. 4. However, the volume will be different, as expressed by eq. 6, 

𝑉𝑉 = 4𝜋𝜋 �𝑟𝑟𝑝𝑝2∆𝑟𝑟𝑝𝑝 + ∆𝑒𝑒𝑖𝑖
3

12
�,           (6) 

as well as the resistance terms. [7] This will yield a different governing equation: 
�𝑟𝑟𝑝𝑝2∆𝑟𝑟𝑝𝑝 + ∆𝑒𝑒𝑖𝑖

3

12
� �𝑉𝑉𝑐𝑐𝑝𝑝�𝑝𝑝

∆𝜕𝜕𝑖𝑖
∆𝑝𝑝

= 𝜕𝜕𝑖𝑖−1−𝜕𝜕𝑖𝑖
1

𝑟𝑟𝑖𝑖−1
− 1
𝑟𝑟𝑖𝑖−1+½∆𝑟𝑟𝑖𝑖−1

 

𝑘𝑘𝑖𝑖−1
+

1
𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖

− 1
𝑟𝑟𝑖𝑖

𝑘𝑘𝑖𝑖
+

𝑀𝑀𝑖𝑖−1→𝑖𝑖
�𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖�

2

+  

𝜕𝜕𝑖𝑖+1−𝜕𝜕𝑖𝑖
1
𝑟𝑟𝑖𝑖
− 1
𝑟𝑟𝑖𝑖+½∆𝑟𝑟𝑖𝑖
𝑘𝑘𝑖𝑖

+
1

𝑟𝑟𝑖𝑖+1−½∆𝑟𝑟𝑖𝑖+1
− 1
𝑟𝑟𝑖𝑖+1

𝑘𝑘𝑖𝑖+1
+

𝑀𝑀𝑖𝑖→𝑖𝑖+1
�𝑟𝑟𝑖𝑖+1−½∆𝑟𝑟𝑖𝑖+1�

2

+ 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑙𝑙,𝑖𝑖

4𝜋𝜋
 .  (7) 

The implicit method. There are different ways to solve the governing equation, however, the 
implicit method has turned out to be stable in most cases. In order to solve the equation numerically 
it has to be expressed in a form that will suit the application. [6] The capacity and conductivity 
functions are therefore introduced.  
The capacity function, cylindrical co-ordinates, is stated in eq. 8. 

𝐻𝐻𝑝𝑝
𝐶𝐶𝑒𝑒𝑝𝑝 = 𝑟𝑟𝑝𝑝∆𝑟𝑟𝑝𝑝(𝑉𝑉𝑐𝑐𝑝𝑝)𝑝𝑝

1
∆𝑝𝑝

 .          (8) 

The conductivity function, cylindrical co-ordinates, is stated in eq. 9. 

𝐻𝐻𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝 = 1

ln �
𝑟𝑟𝑖𝑖−1+½∆𝑟𝑟𝑖𝑖−1

𝑟𝑟𝑖𝑖−1
�

𝑘𝑘𝑖𝑖−1
+
𝑙𝑙𝑙𝑙�

𝑟𝑟𝑖𝑖
𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖

�

𝑘𝑘𝑖𝑖
+
𝑀𝑀𝑖𝑖−1→𝑖𝑖
𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖

 .        (9) 

The capacity function, spherical co-ordinates, is stated in eq. 10. 

𝐻𝐻𝑝𝑝
𝐶𝐶𝑒𝑒𝑝𝑝 = �𝑟𝑟𝑝𝑝2∆𝑟𝑟𝑝𝑝 + ∆𝑒𝑒𝑖𝑖

3

12
� �𝑉𝑉𝑐𝑐𝑝𝑝�𝑝𝑝

1
∆𝑝𝑝

.          (10) 

The conductivity function, spherical co-ordinates, is stated in eq. 11. 

𝐻𝐻𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝 = 1
1

𝑟𝑟𝑖𝑖−1
− 1
𝑟𝑟𝑖𝑖−1+½∆𝑟𝑟𝑖𝑖−1

 

𝑘𝑘𝑖𝑖−1
+

1
𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖

− 1
𝑟𝑟𝑖𝑖

𝑘𝑘𝑖𝑖
+

𝑀𝑀𝑖𝑖−1→𝑖𝑖
�𝑟𝑟𝑖𝑖−½∆𝑟𝑟𝑖𝑖�

2

.        (11) 

“Time marching.” Supposing the temperature field at time t is known, the temperatures at time 
t+Δt could be solved by the governing equation together with the boundary conditions formulated 
for points 1 and n. [6] The equation for the numerical solution by the implicit method will have 
three unknown temperatures to solve, here put on the left-hand side of the equation: 
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−𝐻𝐻𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝−1𝑝𝑝+∆𝑝𝑝 + �𝐻𝐻𝑝𝑝
𝐶𝐶𝑒𝑒𝑝𝑝 + 𝐻𝐻𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 + 𝐻𝐻𝑝𝑝+1𝐶𝐶𝑝𝑝𝑝𝑝�𝑇𝑇𝑝𝑝𝑝𝑝+∆𝑝𝑝 − 𝐻𝐻𝑝𝑝+1𝐶𝐶𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝+1𝑝𝑝+∆𝑝𝑝 = 𝐻𝐻𝑝𝑝

𝐶𝐶𝑒𝑒𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝 +
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑙𝑙,𝑖𝑖
𝑡𝑡+∆𝑡𝑡

𝐵𝐵
 ,     (12) 

in case of cylindrical co-ordinates: 𝐵𝐵 = 2𝜋𝜋∆𝑧𝑧,        (13) 

and in case of spherical co-ordinates: 𝐵𝐵 = 4𝜋𝜋.       (14)  
The solution will be reached by collecting the equations in an equation system, written in matrix 

form. For the nodes 2 to n-1, eq. 12 is applied and for the outer nodes equations formulated with the 
boundary conditions will be used. The equation system will be tridiagonal, best solved by the tri-
diagonal matrix algorithm procedure.  

Both heat capacity and heat conductivity are temperature dependent, since the material 
parameters, among them the density, are temperature dependent. They should therefore change with 
each temperature. 
Enthalpy change. During solidification, release of a certain amount of heat will occur. The way to 
model this and to ensure that all of the latent heat is released, is with the help of a push-back 
algorithm [6], ensuring that the temperature step is not to large at the beginning and the end of 
solidification (and thereby omit the increased portion of the cp value, or using a too large cp, 
respectively). 

The amount of heat released could be written: 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑑𝑑′′′ = 𝑓𝑓𝑟𝑟𝑉𝑉𝐿𝐿.                      (15) 

By differentiating eq. 15, rewriting and inserting it into the heat conduction equation we get the 
expression: 

�𝑐𝑐𝑝𝑝 −
𝜕𝜕𝑑𝑑𝑠𝑠
𝜕𝜕𝜕𝜕
𝐿𝐿� 𝑉𝑉 𝜕𝜕𝜕𝜕

𝜕𝜕𝑝𝑝
= ∇(𝑘𝑘∇𝑇𝑇).                     (16) 

This yields that in the solidification interval the cp-value must be adjusted: 

𝑐𝑐𝑝𝑝
𝑟𝑟𝑝𝑝𝑒𝑒𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑝𝑝 −

𝜕𝜕𝑑𝑑𝑠𝑠
𝜕𝜕𝜕𝜕
𝐿𝐿.         (17) 

Experimental Work 

Volume change and density measurements. For the 1D-measurements a conventional push-rod 
dilatometer from Netzsch (DIL 402C) was used. Measurement method and results have been 
described in depth elsewhere [13] and will here only be explained in brief. Grey iron alloys of 
varying carbon contents were cast and specimens in the form of small cylinders (weighing 
approximately 2.8 g) were machined. These samples were aimed for testing in the liquid state, in a 
range from approximately 100 °C above liquidus temperature down to liquidus temperature. The 
samples were first encased in an aluminum oxide cylinder with a piston at each end, transferring the 
movements of the sample to the push rod. Data could thus be logged for length change at the 
corresponding temperature. In order to measure the contraction behavior of austenite, a series of 
steel alloys with varying carbon content were cast, and likewise machined into cylinders. These 
samples were tested in the temperature range where the material would be austenitic. Testing of 
these samples was performed without the aluminum oxide container. The calculations of the density 
have been based on the assumption of material isotropy. Thus, the axial expansion could be set as 
proportional to the expansion of the diameter. The density of a cylindrical sample (at an arbitrary 
temperature) can be written as: 

𝑉𝑉(𝑇𝑇) = 4∗𝑒𝑒𝑎𝑎
(𝑑𝑑(𝜕𝜕))2∗𝜋𝜋∗𝑒𝑒(𝜕𝜕)

 .          (18) 

The density calculations for the liquid samples build on the same assumption, however, in the case 
of radial expansion, these samples were confined by the container. The diameter was therefore set 
to the inner diameter of the aluminum oxide container at the same temperature. It may here also be 
pointed out that because of the position of the thermocouple (near the outer wall of the aluminum 
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oxide container) the sample temperature will deviate from the temperature logged by the 
instrument. The temperature difference depends largely on the thermal properties of the aluminum 
oxide. 

For the 3D-measurements, a spherical vessel filled with liquid grey cast iron was used. [14] The 
volume change of the sphere was measured at three points at the surface and an average of the 
change in radial direction was calculated at each timestep. 

The chemical composition of the alloys used in the simulation can be found in table 1.  
Table 1. Chemical composition of the alloys used in the simulations. Unit in wt%. 

Sample C Si Mn P S 
Cylindrical, liquid range 3.11 1.82 0.48 0.02 0.02 
Cylindrical, austenitic range 0.59 1.75 0.41 0.004 0.02 

Simulation. Two different scripts, written and executed in MATLAB and based on the described 
calculation method, were used, one simulating the cylindrical case and the other simulating the 
spherical case. Both, however, were structured in the same way, calculating the temperature 
distribution by equation 12 and taking the enthalpy change into account. In the case of the 
cylindrical sample, a uniform mesh of Δr = 0.325 mm was used. The mesh contained 10 metal cells, 
six cells in the mold and two for the surrounding atmosphere. In order to simulate the temperature 
distribution, chosen values were applied. These can be found in table 2. For the simulation of the 
spherical sample a mesh of Δr =0.5 mm was applied. The mesh contained 33 metal cells, one for the 
mold and two for the surrounding air.  

Table 2. Property values applied in the simulation. 

ρcasting 
[kg/m3] 

cp, casting 
[J/kgK] 

Lsolidification 
[J/kg] 

Lsol state transf 
[J/kg] 

Tliq  
[°C] 

Tsol  
[°C] 

7000 700 -240*103 -80*103 1230/1238 1155 

Simulating the cylindrical case, the experimentally measured density data in the liquid and the 
austenitic ranges were read into the program and the temperature in the first surrounding-air node 
was put equal to the temperature measured in the experiment. The volume of the simulated 
cylindrical sample was calculated by: 

𝑉𝑉(𝑇𝑇) = 𝑒𝑒𝑎𝑎
𝜌𝜌(𝜕𝜕)

,            (19) 
at each timestep, based on the temperature in the metal cells, the weight of the sample (measured 
after the experiment) and the density at the temperature in question. The simulated volume was then 
compared with the volume curve from the experiment.  

For the spherical samples the value for the weight was chosen to 145 g. The calculation of the 
volume in the liquid and austenitic ranges was performed in the same way as for the cylindrical 
samples, apart from that the temperature field was assigned to the mold cell.  

Results 
The results of the simulation of the cylindrical samples are presented in figures 2, 3 and 4. Since 

the result from the dilatometer experiments on this particular alloy showed two different behaviors, 
both types has been used in the comparison (samples C325-7 and C325-20).  
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Figure 2. Simulated volume and volume curve 
from measurement for the cylindrical samples 

(Sample C325-7). 

Figure 3. Simulated volume and volume curve 
from measurement for the cylindrical samples 

(Sample C325-20). 

 

 
 
 
 
 
 
 
 
 

Figure 4. Simulated volume and volume 
curve from measurement for the cylindrical 

samples, liquid range (Sample C325-7). 

The simulated volume and the measured volume for the spherical sample is presented in figures 
5 and 6. The volume has been calculated based on the data from the same two density 
measurements as in figure 2, 3 and 4. 

  
Figure 5. Simulated volume and volume curve 
from measurement for the spherical samples 

(Density data from C325-7). 

Figure 6. Simulated volume and volume curve 
from measurement for the spherical samples 

(Density data from C325-20). 

Discussion 
The discrepancy between the simulated volume and the volume curve from the measurement in 

pictures 3 to 7 could be found in the measurement of the temperature in the Netzsch dilatometer. 
Since the thermocouple is placed outside of the container and the measurements were performed on 
a cooling liquid, the temperature in the liquid metal would be higher than the thermocouple is 
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logging. The magnitude of the temperature difference should therefore be investigated and taken 
into account in the further modelling. The other modes of heat transfer have not been taken into 
account, since it was not the scope at this stage, but these may also have an impact on the results.  

In the austenitic range, in all of the pictures, the simulated curve follows the contraction of 
austenite with a carbon content of 0.59 wt% carbon. Segregation effects has thus not been taken into 
account. The graphite fraction, which in the actual measurements has got an influence, has likewise 
not been modelled. Further modelling should therefore include these areas. Based on this work, the 
volume changes in the mushy zone will be modelled, thereby obtaining a deeper understanding of 
the mechanisms behind shrinkage porosity. 

Conclusion 
It is possible to model and simulate volume change based on temperature distribution and 

measured density data with good results.  
It is likely that the addition of a graphite fraction to the curve in the austenitic range will position 

the simulated curve closer to the measured one.  
The present investigation constitutes a good basis for further modelling of volume changes 

during the earlier stages of solidification.  

Nomenclature 
q  Diffusive heat flow (heat flux) perpendicular through the surface of 

the area [W] 
k  Thermal conductivity [W/(mK)] 
A Area of the surface [m2] 
T and ΔT Temperature and temperature difference [K] or [°C] 
x  Descriptive space parameter perpendicular to the surface [m] 
r  Radius [m] 
𝑄̇𝑄 Change of heat content per unit time [W] 
V Volume [m3] 
ρ Density [kg/m3] 
cp Specific heat [J/(kgK)] 
t and Δt Time and time difference [s] 
fs Fraction solid 
L Total solidification heat [J/kg] 
𝑄̇𝑄𝑔𝑔𝑒𝑒𝑝𝑝  Volumetric heat generation [W/m3] 
𝑀𝑀𝑝𝑝−1→𝑝𝑝 and 𝑀𝑀𝑝𝑝→𝑝𝑝+1 Heat resistances between node i-1 and i and between i and i+1 
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑑𝑑′′′   Heat released [J/m3] 
∇2𝑇𝑇  Laplace operator [°C/m2] 
ma Mass [kg] (weighed in air) 
d Diameter [m] 
l Length [m] 
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