Porous Barriers Efficiency Research under the Compact Elements High - Speed Loading

Abstract:

Article Preview

The paper discusses the results of the numerical simulation of high-speed impact effect of compact projectiles made of steel and tungsten alloy with steel obstacles of equal mass. The obstacles have different initial porosity of the material. Conducted the final evaluation of the penetration speed of the projectile depending on the porosity of the obstacle and the initial speed of the shock interaction. The initial impact velocity range from 1 to 16 [km/s]. The destruction, melting and evaporation of the interacting bodies are taken into account. The analysis of porosity influence evaluation of obstacles material revealed that the protective advantage of porous obstacles disclose at the higher impact velocities, greater than 1.5 [km/s] for steel strikers and 2 [km/s] for projectiles of tungsten alloy. The more impact velocity the more protective effect of porous obstacles.

Info:

Periodical:

Edited by:

Dr. Dmitry A. Chinakhov

Pages:

48-54

Citation:

E.N. Kramshonkov et al., "Porous Barriers Efficiency Research under the Compact Elements High - Speed Loading", Materials Science Forum, Vol. 927, pp. 48-54, 2018

Online since:

July 2018

Export:

Price:

$38.00

[1] V.G. Trushkov, V.P. Glazyrin, E.N. Kramshonkov Assessment of barriers material porosity on perforation capacity under the high speed shock, Russian Physics Journal, 7/2, 202 (2009).

[2] V.G. Trushkov, Numerical investigation of high-speed interaction objects of large deformation medium in the Euler space variables (2007).

[3] A.V. Zhukov, The interpolation wide-range equation of state of metals in variables: pressure, density, energy, J. Deformable solid mechanics, 70 (1987).

[4] V.F. Tolkachyov, V.G. Trushkov, Mathematical modeling of shear and spall failure processes of elastoplastic bodies under shock interaction, J. Chemical physics 2, 170 (1993).

[5] L.V. Efremova, A.I. Korneev, V. G. Trushkov, Numerical modeling of process of conic facing deformation, J. Physics of combustion and explosion 2, 110 (1987).

[6] C.V. Razorenov, G.I. Kanel, E.N. Kramshonkov, K. Baumung, Shock compression and spall failure of cobalt at normal and elevated temperatures, J. Physics of combustion and explosion 5, 119 (2002).

DOI: https://doi.org/10.1023/a:1020303004747

[7] E. N. Kramshonkov, A. V. Kraynov, P. V. Shorokhov, Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading (Article number 01031), European Physical Journal (EPJ) Web of Conferences 110 , 1 (2016).

DOI: https://doi.org/10.1051/epjconf/201611001031

[8] A. V. Kraynov, G. V. Kuznetsov, Conjugate heat transfer during viscous liquid movement in the open cavity, considering its cooling through outer boundary of back surface (01023), European Physical Journal (EPJ) Web of Conferences 76, 1 (2014).

DOI: https://doi.org/10.1051/epjconf/20147601023

[9] A.V. Kraynov, E.N. Pashkov, A.V. Ponomarev, Conjugate Heat Transfer in the Interaction of the Viscous Liquid with Technological Elements of Energy Systems in Conditions of Their Internal Contour Moving, J.Advanced Materials Research 1040, 638 (2014).

DOI: https://doi.org/10.4028/www.scientific.net/amr.1040.876

[10] G.V. Kuznetsov, A.V. Krainov, Conjugate heat exchange and hydrodynamics for a viscous incompressible fluid moving in a rectangular cavity, J. Applied Mechanics and Technical Physics 5, 851 (2001).

[11] G.V. Kuznetsov, A.V. Krainov, Conjugate heat and mass transfer under conditions of motion of a viscous incompressible liquid in an open rectangular cavity and wall melting, J. High Temperature 2, 252 (2003).

[12] A.V. Kraynov, V.A. Arhipov, Conjugate Heat Transfer During Viscous Incompressible Liquid Movement in the Cavity Considering its Cooling Through Outer Boundary (Article number 01030), European Physical Journal (EPJ) Web of Conferences 110 , 1 (2016).

DOI: https://doi.org/10.1051/epjconf/201611001030

[13] A.V. Kraynov, E. N. Pashkov, R. E. Lushnikov, V. A. Arkhipov, Hydrodynamics and heat transfer in the coolant flows in the elements of the technical designs of industrial systems, J. Key Engineering Materials 685, 280 (2016).

DOI: https://doi.org/10.4028/www.scientific.net/kem.685.280

[14] H. Park, H. Kim, International Journal of Impact Engineering, 37, 177 (2010).

[15] Paul M. Booker, James D. Cargile, Bruce L. Kistler, Valeria La Saponara, International Journal of Impact Engineering, 36, 926 (2009).

[16] H. Wu, Q. Fang, Y. Peng, Z.M. Gong, X.Z. Kong, International Journal of Impact Engineering, 76, 232 (2015).

[17] Y.Y. Zhang, L. Chen, International Journal of Impact Engineering, 36, 651 (2009).

[18] T.T. Garfield, W.D. Richins, T.K. Larson, C.P. Pantelides, J.E. Blakeley, 11th International Conference on the Mechanical Behavior of Materials (ICM11), 10, 3534 (2011).

[19] R. T. Moura, A. H. Clausen, E. Fagerholt, M. Alves, M. Langseth, International Journal of Impact Engineering, 37, 580 (2010).

[20] Hua Jiang, Xiaowo Wang, Shuanhai He, Materials & Design, 39, 111 (2012).

[21] J.J. Rimoli, B. Talamini, J.J. Wetzel, K.P. Dharmasena, R. Radovitzky, H.N.G. Wadley, International Journal of Impact Engineering, 38, 837 (2011).

[22] T. Børvik, L. Olovsson, A.G. Hanssen, K.P. Dharmasena, H. Hansson, H.N.G. Wadley, Journal of the Mechanics and Physics of Solids, 5, 940 (2011).

[23] C.J. Yungwirth, J. O'Connor, A. Zakraysek, V.S. Deshpande, H.N.G Wadley, Journal of the American Ceramic Society, 94, S62 (2011).

[24] Hamid Gheadnia, Ozdes Cermik, Dan B. Marghitu, International Journal of Impact Engineering, 86, 307 (2015).

[25] M. Scapin, L. Peroni, M. Peroni, International Journal of Impact Engineering, 40, 58 (2012).

[26] Yihao Cheng, Mingyang Wang, Cuncheng Shi, Hualin Fan, Lang Li, Qing, International Journal of Impact Engineering, 81, 50 (2015).

[27] G.S. Collins, H.J. Melosh, K. Wünnemann, International Journal of Impact Engineering, 38, 434 (2011).

[28] P. Forquin, A. Arias, R. Zaera, International Journal of Impact Engineering, 35, 133 (2008).

[29] N. Biswas, J.L. Ding, International Journal of Impact Engineering, 82, 89 (2015).

[30] A.V. Nikolaev, Gornyi Zhurnal, 3, 71 (2017).

[31] A.V. Nikolaev, Neftyanoe Khozyaystvo - Oil Industry, 11, 133 (2016).

[32] N.I. Alymenko, A.V. Nikolaev, A.A. Kamenskikh, A.I. Petrov, Eurasian Mining, 2, 45 (2016).