Mechanical, Thermal and Rheological Properties of Reprocessable Poly(Butylene Succinate)


Article Preview

In the plastic industry, recycling waste from production is normal practice for reducing waste and cost. When they were reproduced, their mechanical properties are changed. These changes may affect the quality of the end product. Hence, this work studied the mechanical, thermal and rheological properties of recycled biodegradable poly (butylene succinate) (PBS) with reproduction of 10 cycles. The results showed that tensile strength was slightly increased with increasing reproduction cycle until 6th cycles and reduced in the further cycles, respectively. The elongation at break was abruptly decreased with an increase of the cycle number. Moreover, the hardness was quite constant in the lower cycle number but it was slightly decreased in the higher one. Melt flow index (MFI) measurements indicated a significant change in the material after 2rd recycles. The results on thermal properties measurement showed that degree of crystallinity decreased in the 6th cycles.



Edited by:

Xiao Hong Zhu




N. Prasoetsopha et al., "Mechanical, Thermal and Rheological Properties of Reprocessable Poly(Butylene Succinate)", Materials Science Forum, Vol. 928, pp. 3-8, 2018

Online since:

August 2018




* - Corresponding Author

[1] S. Fic and D. Barnat-Hunek: Inter. J. Mater. Sci. Eng. Vo. 2 (2014), p.93.

[2] Y. Zhao, J. Qiu, H. Feng, G. Zhang and L. Shao: Mater. Sci. Forum Vol. 675-677 (2011), p.361.

[3] C.W. Zhou, J.X. Zhao, Q.L.B. Meng, Z.H. Wu: Intern. Polym. Proc.Vol. 28 (2013), p.483.

[4] F. Awaja and D. Pavel: Euro. Polym. J. Vol. 41 (2005), p.1453.

[5] G.M. Mamoor, W. Shahid, A. Mushtaq, U. Amjad and U. Mehmood: Chem. Eng. Res. Bull. Vol. 16 (2013), p.25.

[6] M. Sadat-Shojai and G.-R. Bakhshandeh: Polym. Degrad. Stab. Vol. 96 (2011), p.404.

[7] A.K. Jassim: Procedia Manuf. Vol. 8 (2017), p.635.

[8] P. Oblak, J. Gonzalez-Guterrez, B. Zupancic, A. Aulova and I. Emri: Polym. Degrd. Stab. Vol. 114 (2015), p.133.

[9] A. Soroudi and I. Jakubowicz: Euro. Poly. J. Vol. 49 (2013), p.2839.

[10] M. Zenkiewicz, J. Richert, P. Rytlewski, K. Moraczewski, M. Stepczynska and T. Karasiewicz: Eur. Polym. J. Vol. 28 (2009), p.412.

[11] F. Jbilou, P. Dole, P. Degraeve, C. Ladaviere and C. Joly: Eur. Polym. J. Vol. 68 (2015), p.207.

[12] Y.Q. Zhao, J. Qu, Y.H. Feng, Z.H. Wu, F.Q. Chen and H.L. Tang: Polym. Adv. Technol. Vol. 23 (2012), p.632.

[13] J. Huang, X. Lu, N. Zhang, L. Yang, M. Yan, H. Liu, G. Zhang and J. Qu: Polym. Compos. Vol. 35 (2013), p.53.

[14] A.K. Mohanty, M. Misra, L.T. Drzal: J. Polym. Environ. Vol. 10 (2002), p.19.

[15] P. Tecchio, P. Freni, B.D. Benedetti and F. Fenouillot: J. Clean. Prod. Vol. 112 (2016), p.316.

[16] H. He, S. Yoshida M. Kawasaki, M. Karikomi, T. Kimura and S. Maruo: Polym. Test. Vol. 56 (2016), p.180.

[17] B.P. Calabia, F. Ninomiya, H. Yagi, A. Oishi, K. Taguchi, M. Kunioka and M. Funabashi: Polym.Vol. 5 (2013), p.128.

[18] Y. Zhang, C. Yu, P. K. Chu, F. Lv, C. Zhang, J. Ji, R. Zhang and H. Wang: Mater. Chem. Phys. Vol. 133 (2012), p.845.

[19] Y.J. Phua, W.S. Chow and Z.A. Mohd Ishak: eXPRESS Polm. Lett. Vol. 7 (2013), p.340.

[20] J. Li, X. Luo and X. Lin: Mater. Design. Vol. 46 (2013), p.902.

[21] R.-T. Zeng, W. Hu, M. Wang, S.-D. Zhang and J.-B. Zeng: Polym. Test. Vol. 50 (2016), p.182.

[22] S. Hemsri, C. Thongpin, N. Moradokpermpoon, P. Niramon, M. Suppaso: Macromal. Symp. Vol. 354 (2015), p.145.

[23] V.M. Correlo L.F. Boesel, E. Pinho, A.R. Costa-Phintp, M.L. Alves de Silva, M. Bhattacharya, J.F. Mano, N.M. Neves, R.L. Reis: J. Biomed. Mater. Res. Vol. 91A (2009), p.489.

[24] N. Torres, J.J. Robin, B. Bountvin:. Eur. Polym. J. Vol. 36 (2000), p. (2075).

[25] I. Pillin, N. Montrelay, A. Bourmaud and Y. Grohens: Polym. Degrad. Stab. Vol. 93 (2008), p.321.

[26] J.D. Badia, E. Stromberg, S. Karlsson and A. Riber-Greus: J. Polym. Environ. Vol. 19 (2012), p.988.

[27] K. Hamad, M. Kaseem and F. Deri: J. Mater. Sci. Vol. 46 (2011), p.3013.