In Situ Hydration of Sulfoaluminate Cement Mixtures Monitored by Synchrotron X-Ray Diffraction

Abstract:

Article Preview

Mixtures of calcium sulfoaluminate and Portland clinkers with gypsum were hydrated with deionized water. The pastes were introduced in 0.7 mm borosilicate capillary tubes and kept at 40 oC while diffraction patterns were collected every 35 s for approximately 3 hours with a monochromatic radiation of 12 keV at the XRD1 beamline of the Laboratório Nacional de Luz Síncrotron (LNLS) in Campinas, SP - Brazil. The main crystalline phases (C2S, C3S, ettringite, ye’elemite and gypsum) involved in the hydration were quantified by Rietveld analysis. The most noticeable fact was the absence of portlandite as a crystalline precipitate, most likely due to the capture of calcium ions to form ettringite.

Info:

Periodical:

Edited by:

Clodomiro Alves Junior

Pages:

153-157

Citation:

C. M. Rossetto et al., "In Situ Hydration of Sulfoaluminate Cement Mixtures Monitored by Synchrotron X-Ray Diffraction", Materials Science Forum, Vol. 930, pp. 153-157, 2018

Online since:

September 2018

Export:

Price:

$41.00

[1] W. Lerch, F.W. Ashton, R.H. Bogue: Bureau Standards Journal of Research RP Vol. 54 (2) (1929), p.715.

[2] A. Klein: US Patent no. 3,155,526 (1964).

[3] F. Winnefeld, B. Lothenbach: Cement and Concrete Research Vol. 40 (2010), p.1239.

[4] J.S. Damtoft, J. Lukasik, D. Hertford, D. Sorrentino, E.M. Gartner: Cement and Concrete Research Vol. 38 (2008), p.115.

[5] J. Beretka, R. Cioffi, M. Marroccoli, G.L. Valenti: Waste Management Vol. 16 (1996), p.231.

[6] F. Winnefeld, S. Barlag: ZKG International Vol. 82 (2009), p.42.

[7] I. Janotka, L'. Krajči, A. Ray, S.C. Mojumdar: Cement and Concrete Research Vol. 33 (2003), p.489.

[8] P. Chaunsali, P. Mondal: Cement and Concrete Research Vol. 80 (2016), p.10.

[9] P. Lalan, A. Dauzères, L. DeWindt, D. Bartier, J. Sammaljärvi, J.D. Barnichon, I. Techer, V. Detilleux: Cement and Concrete Research Vol. 83 (2015), p.164.

DOI: https://doi.org/10.1016/j.cemconres.2016.02.001

[10] J. Péra, J. Ambroise: Cement and Concrete Research Vol. 34 (2004), p.671.

[11] C.C.D. Coumes, S. Courtois, S. Peysson, J. Ambroise, J. Pera: Cement and Concrete Research Vol. 39 (2009), p.740.

[12] S. Peysson, J. Péra, M. Chabannet: Cement and Concrete Research Vol. 35 (2005), p.ç 2261.

[13] E. Henderson, X. Turrillas, P. Barnes: Journal of Materials Science Vol. 30 (1995), p.3856.

[14] A. Cuesta, G. Álvarez-Pinazo, S.G. Sanfélix, I. Peral, M.A.G. Aranda, A.G. De la Torre: Cement and Concrete Research Vol. 63 (2014), p.127.

DOI: https://doi.org/10.1016/j.cemconres.2014.05.010

[15] A.M.G. Carvalho, D.H.C. Araújo, H.F. Canova, C.B. Rodella, D.H. Barrett, S.L. Cuffini, R.N. Costa, R.S. Nunes: Journal of Synchrotron Radiation Vol. 23 (2016), p.1501.

DOI: https://doi.org/10.1107/s1600577516012686

[16] A.C. Larson, R.B. Von Dreele: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (1994).

[17] A.S.B. Silva, L. G. Martinez: Internal Report of MSc. Thesis (unpublished) - IPEN (2016).

[18] Research Systems Inc., Sterling, VA, 20164, USA. Program IDL Version 5.2 (1998).

[19] Research Systems Inc., Sterling, VA, 20164, USA. Program NOeSYS, Version 1.2 (1998).

[20] OriginLab Corporation, Northampton, MA, 01060, USA. Program Origin Version 8.0 (2010).