Precipitation Characterization and Mechanical Behavior in Novel DP Steels


Article Preview

Dual precipitates of carbide and copper particles formed within Cu-Ti microalloyed DP (Dual Phase) steel in the present study. The precipitation behaviors of tiny precipitates, especially in the ferrite matrix, were checked precisely by several methods, such as optical microscopy, high resolution transmission electron microscopy, and hardness testing. It was found that copper particles nucleated only on the interphase precipitated TiC and were not dispersed randomly within the ferrite matrix. Therefore, the formation of dual precipitates within the ferrite grains should be considered as separated phase transformation; initially, only titanium carbides form during the austenite decomposition reaction, after which copper particles heterogeneously nucleate on these carbides. Furthermore, as compared to Cu microalloyed DP steel, the tempering behavior of martensite in the Cu-Ti microalloyed DP steel showed a tempering hardening characteristic.



Edited by:

Umemura Kazuo, Harald Justnes, Ki-Bum Kim and Takashiro Akitsu




C. Y. Chen et al., "Precipitation Characterization and Mechanical Behavior in Novel DP Steels", Materials Science Forum, Vol. 939, pp. 9-15, 2018

Online since:

November 2018




* - Corresponding Author

[1] Fan Zhang, Annie Ruimi, Pui Ching Wo, and David P. Field, Mater. Sci. Eng. A Vol. 659 (2016), p.93.

[2] A.-P. Pierman, O. Bouaziz, T. Pardoen, P. Jacques, and L. Brassart, Acta Mater. Vol. 73 (2014), p.298.

[3] G. Avramovic-Cingara, C.A.R. Saleh, M.K. Jain, and D.S. Wilkinson, Metall. Mater. Trans. A, Vol. 40A (2009), p.3117.

[4] E. Maire, O. Bouaziz, M. DiMichiel, and C. Verdu, Acta Mater. Vol. 56 (2008), p.4954.

[5] Cheng-Ning Li, Xiao-Lei Li, Guo Yuan, R.D.K. Misra, Jian Kang, and Guo-Dong Wang, Mater. Sci. Eng. A, Vol. 673 (2016), p.213.

[6] C. P. Scott, F. Fazeli, B. Shalchi Amirkhiz, I. Pushkareva, and S. Y. P. Allain, Mater. Sci. Eng. A, Vol. 703 (2017), p.293.

[7] Jae-Gil Jung, Minsu Jung, Sang-Min Lee, Eunjoo Shin, Han-Chul Shin, and Young-Kook Lee, J. Alloys Compd., Vol. 553 (2013), p.299.


[8] S. M. He, N. H. van Dijk, M. Paladugu, H. Schut, J. Kohlbrecher, F. D. Tichelaar, and S. van der Zwaag, Phys. Rev. B, Vol. 82 (2010), pp.174111-14.

[9] E. Kozeschnik, Scripta Mater., Vol. 59 (2008), p.1018.

[10] ASTM E8/E8M-15, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA,

[11] A. Mein, G. Fourlaris, D. Crowther, and P J. Evans, Mater. Charact., Vol. 64 (2012), p.69.

[12] Hiroshi Matsuda, Reiko Mizuno, Yoshimasa Funakawa, Kazuhiro Seto, Saiji Matsuoka, and Yasushi Tanaka, J. Alloys Compd. Vol. 577S (2013), p. S661.


[13] Chih Yuan Chen, Chien Chon Chen, and Jer Ren Yang, Mater. Sci. Eng. A Vol. 626 (2015), p.74.

[14] C. Y. Chen, H. W. Yen, F. H. Kao, W. C. Li, C. Y. Huang, J. R. Yang, and S. H. Wang, Mater. Sci. Eng., A, Vol. 499 (2009), p.162.

[15] Shao-Pu Tsai, Chih-Hung Jen, Hung-Wei Yen, Chih-Yuan Chen, Ming-Chin Tsai, Ching-Yuan Huang, Yuan-Tsung Wang, and Jer-Ren Yang, Mater. Charact. Vol. 123 (2017), p.153.


[16] H. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi, Mater. Sci. Eng., A, Vol. 680 (2017), p.197.

[17] Marion Calcagnotto, Yoshitaka Adachi, Dirk Ponge, and Dierk Raabe, Acta Mater., Vol 59 (2011), p.658.


[18] J. W. Morris Jr., Nat. Mater., Vol. 16 (2017), p.787.

[19] Naoya Kamikawa, Masahiro Hirohashi, Yu Sato, Elango Chandiran, Goro Miyamoto, and Tadashi Furuhara, ISIJ Inter., Vol. 55 (2015), p.1781.