On the Study of a TiB2 Nanoparticle Reinforced 7075Al Composite with High Tensile Strength and Unprecedented Ductility


Article Preview

Strength and ductility are the two most important mechanical properties of a structural material. However, they are often mutually exclusive. In this study, a 6 wt. % TiB2 nanoparticle reinforced 7075Al (i.e. TiB2/7075Al) composite was designed and produced by the processing route combining casting, friction stir processing, hot extrusion and T6 heat treatment. The result of tensile testing demonstrates that the as-processed composite sample presents an ultimate tensile strength of 677 MPa and a total elongation to failure of around 15 %, being higher than any Al or Al based materials ever reported. The typical microstructure contains the TiB2 reinforcement nanoparticles uniformly distributed in the equiaxed Al grain matrix (2 μm in average grain size). In addition to the dispersed nanoprecipitates of the 7075Al (Al-Zn-Mg-Cu) matrix, the integrated TiB2 nanoparticles are systematically decorated by a shell corresponding to (Zn1.5Cu0.5)Mg. This finding challenges our understanding and opens a door for further enhancing strength and ductility being easily scalable for industrial applications.



Main Theme:

Edited by:

R. Shabadi, Mihail Ionescu, M. Jeandin, C. Richard and Tara Chandra




Y. Ma et al., "On the Study of a TiB2 Nanoparticle Reinforced 7075Al Composite with High Tensile Strength and Unprecedented Ductility", Materials Science Forum, Vol. 941, pp. 1933-1938, 2018

Online since:

December 2018




* - Corresponding Author

[1] R. Valiev, Materials science: nanomaterial advantage. Nature 419 (2002) 887-889.

DOI: https://doi.org/10.1038/419887a

[2] C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49 (2003) 657-662.

[3] Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal. Nature 419 (2002) 912-915.

DOI: https://doi.org/10.1038/nature01133

[4] Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li et al., High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20 (2008) 3028-3033.

DOI: https://doi.org/10.1002/adma.200800214

[5] K. Lu, Making strong nanomaterials ductile with gradients. Science. 345 (2014) 1455-1456.

DOI: https://doi.org/10.1126/science.1255940

[6] Y. Wang, T. Voisin, J. T. McKeown, J. Ye, N.P. Calta, Z. Li et al., Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17 (2018) 63-71.

DOI: https://doi.org/10.1038/nmat5021

[7] L. Chen, J. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick et al., Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature. 528 (2015) 539-543.

DOI: https://doi.org/10.1038/nature16445

[8] G. Liu, G. Zhang, F. Jiang, X. Ding, Y. Sun, J. Sun et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12 (2013) 344-350.

DOI: https://doi.org/10.1038/nmat3544

[9] Z. Chen, G. Sun, Y. Wu, M. Mathon, A. Borbely, D. Chen et al., Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites. Mater. Des. 116 (2017) 577-590.

DOI: https://doi.org/10.1016/j.matdes.2016.12.070

[10] X. Ju, F. Zhang ,Z. Chen, G. Ji, M. Wang, Y. Wu et al., Microstructure of Multi-Pass Friction-Stir-Processed Al-Zn-Mg-Cu Alloys Reinforced by Nano-Sized TiB2 Particles and the Effect of T6 Heat Treatment. Metals. 7 (2017) 530.

DOI: https://doi.org/10.3390/met7120530

[11] M. Ellner, B. Predel. Neutronenbeugungsuntersuchungen an ternären Laves-Phasen vom MgCu2-Typ. J. Solid State Chem. 30 (1979) 209-221.

DOI: https://doi.org/10.1016/0022-4596(79)90103-8

[12] X. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H. Wang et al., Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 129 (2017) 183-193.

DOI: https://doi.org/10.1016/j.actamat.2017.02.062

[13] Y. Zhao, X. Liao, S. Cheng, E. Ma, Y. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18 (2006) 2280-2283.

DOI: https://doi.org/10.1002/adma.200600310

[14] P.V. Liddicoat, X. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia et al., Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1 (2010) 63.

DOI: https://doi.org/10.1038/ncomms1062

[15] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock. 3d printing of high-strength aluminium alloys. Nature. 549 (2017) 365-369.

DOI: https://doi.org/10.1038/nature23894

[16] Z. Li, Q. Guo, Z. Li, G. Fan, D. Xiong, Y. Su et al., Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 15 (2015) 8077-8083.

DOI: https://doi.org/10.1021/acs.nanolett.5b03492

[17] X. Kai, Z. Li , G. Fan, Q. Guo, Z. Tan, W. Zhang et al., Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy. Scr. Mater. 68 (2013) 555-558.

DOI: https://doi.org/10.1016/j.scriptamat.2012.11.024

[18] N. Petch N, The Cleavage Strengh of Polycrystals. J. Iron Steel Inst. 174 (1953) 25-28.

[19] C-S. Kim, I. Sohn, M. Nezafati, J. Ferguson, B.F. Schultz, Z. Bajestani-Gohari et al., Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48 (2013) 4191-4204.

DOI: https://doi.org/10.1007/s10853-013-7232-x

[20] Z. Zhang, D. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr. Mater. 54 (2006) 1321-1326.

DOI: https://doi.org/10.1016/j.scriptamat.2005.12.017