Investigation of the Possibility for Control of High-Temperature Synthesis of Nanomaterials


Article Preview

The feasibility of creating conditions for control of high-temperature synthesis (SHS) of nanomaterials has been studied. Experiments were carried out to determine the velocity of the combustion wave propagation of aluminum nanopowder obtained by electric explosion. In the course of the study, the factors influencing formation of the induction time: the thermal diffusivity of the substrate, the method of initiation of the combustion wave (flame, spark, heated body), the induction time between the initiating front and the front of the thermal explosion were considered. The relation describing the time of induction of thermal explosion is established.



Edited by:

Dr. Anatoliy Surzhikov




A. I. Sechin et al., "Investigation of the Possibility for Control of High-Temperature Synthesis of Nanomaterials", Materials Science Forum, Vol. 942, pp. 1-10, 2019

Online since:

January 2019




* - Corresponding Author

[1] R. Johnston, J. Wilcoxon, Metal Nanoparticles and Nanoalloys, first ed., E-Publishing Inc., New York, (2012).

[2] P. Dolez, Nanoengineering, first ed., E-Publishing Inc., New York, (2015).

[3] A. Eivazihollagha, J. Bäckströmb, C. Dahlströma, F. Carlssonc, I. Ibrahema, B. Lindmana, H. Edlunda, M. Norgren, One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties, Materials Letters 187 (2017) 170–172.

[4] A. Rampino, M. Borgogna, P. Blasi, B. Bellich, A. Cesaro, Chitosan nanoparticles: preparation, size evolution and stability, Int. J. Pharmaceutics 455 (2013) 219–228.


[5] A. Gomis-Berenguer, L.F. Velasco, I. Velo-Gala, C.O. Ania, Photochemistry of nanoporous carbons: perspectives in energy conversion and environmental remediation, J. Colloid and Interface Science 490 (2017) 879–901.


[6] R. Casati, M. Vedani, Metal Matrix Composites Reinforced by Nano-Particles – A Review, Metals 4 (2014) 65-83.


[7] P.M. Ajayan 2003 Bulk Metal and Ceramics Nanocomposites Nanocomposite Science and Technology Eds P M Ajayan, L S Schadler and P V Braun (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p.1–75.


[8] A. Matlochova, D. Placha, N. Rapantova, The application of nanoscale materials in groudwater remediation, Pol. J. Environ. Stud. 22(5) (2013) 1401-1410.

[9] A.N. Pestryakov, E.N. Kolobova, V.V. Lunin, Silver nanoparticles supported on foam ceramics for catalytic CO oxidation, Int. J. Nanotechnol. 13(1–3) (2016) 200-207.


[10] N.A.C. Lah, M. Samykano, S.J. Trigueros, Nanoscale metal particles as nanocarriers in targeted drug delivery system, Nanomed. Res. 4(2) (2016) 0086.

[11] E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Self-propagating high-temperature synthesis of advanced materials and coatings, International Materials Reviews, 62:4 (2017) 203-239.


[12] A. Hiranaka, X. Yi, G. Saito, J. Niu, T. Akiyama, Effects of Al particle size and nitrogen pressure on AlN combustion synthesis, Ceramics International, 43 (2017) 9872.


[13] Yu Qiu and Lian Gao, Nitridation reaction of aluminum powder in flowing ammonia, Journal of the European Ceramic Society, 23, 12, (2015), (2003).


[14] Yunchao Mu, Dongli Yu and Mingzhi Wang, Combustion synthesis of aluminum carbonitride,International Journal of Refractory Metals and Hard Materials, 29, 5, (639), (2011).


[15] Singanahally T. Aruna, Alexander S. Mukasyan, Combustion synthesis and nanomaterials, Current Opinion in Solid State and Materials Science 12 (2008) 44–50.


[16] Jaeryeong Lee, Ikkyu Lee, Dongjin Kim, Jonggwan Ahn and Hunsaeng Chung, Effect of starting powder morphology on AlN prepared by combustion reaction, Journal of Materials Research, 20, 03, (659), (2005).


[17] Amelkovich Y.A., Nazarenko O.B., Sechin A.I., Fryanova K.O. Investigation of dependence between thermal stability for nanodispersed metals and velocity of flame spreading and time storage // Applied Mechanics and Materials. 682 (2014) 357-362.


[18] Gromov A A, Nazarenko O B, Tikhonov D V, Iljin A P, Pautova Y I 2014 Electroexplosive Nanometals Metal Nanopowders Production, Characterization, and Energetic Applications Eds A A Gromov and U Teipel (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p.67–78.


[19] Y.S. Kwon, J.C. Kim, A.P. Ilyin, O.B. Nazarenko, D.V. Tikhonov, Electroexplosive technology of nanopowders production: current status and future prospects J. Korean Powder Metall. Inst. 19(1) (2012) 40-48.


[20] Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim, Passivation process for superfine aluminum powders obtained by electrical explosion of wires, Appl. Surf. Sci. 211(1–4) (2003) 57–67.


[21] Y.S. Kwon, Y.H Jung, N.A. Yavorovsky, A.P. Ilyin, J.S. Kim, Ultra-fine powder by wire explosion method, Scripta Materialia 44(8–9) (2001) 2247–2251.


[22] GOST 19433-88. Dangerous goods. Classification and marking.

[23] GOST 12.1.044-89. Occupational safety standards system. Fire and explosion hazard of substances and materials. Nomenclature of indices and methods of their determination.