Surface Wear Resistant of 2024-T351 Aluminum Alloy under Cyclic Load of Spherical Rolling Bodies


Article Preview

The paper presents the experimental results of the possible use of the type 2024-T351 aluminum alloy for manufacturing the ball bearing rings of the rotary support system of the calibration equipment for magnetometric inclinometers. Non-magnetic materials for ball bearing manufacturing are reviewed. The description is given to the test equipment and procedures. The experimental results demonstrate that the type 2024-T351 aluminum alloy can be used for manufacturing a tailor-made ball bearing of the rotary support system. Stresses arising in the contact area do not exceed the allowable values of smax £ (0.3–0.5)s0,2.



Edited by:

Dr. Anatoliy Surzhikov




A. Gormakov and A. Golikov, "Surface Wear Resistant of 2024-T351 Aluminum Alloy under Cyclic Load of Spherical Rolling Bodies", Materials Science Forum, Vol. 942, pp. 59-67, 2019

Online since:

January 2019




* - Corresponding Author

[1] Information on

[2] H.B. Bhaskar and Abdul sharief, Tribological properties of aluminium 2024 alloy–beryl particulate MMC's, Bonfring International Journal of Industrial Engineering and Management Science 2(4) (2012) 143-147.


[3] A. Astarita, F. Rubino, P. Carlone, A. Squillace, On the improvement of AA2024 wear properties through the deposition of a cold-sprayed titanium coating article,Metals - Open Access Metallurgy Journal, 6(8) (2016).


[4] Yu. Golovin, V. Vasyukov, E. Isaeva, A. Kolmakov, R. Stolyarov, K. Tikhomirova, A. Tkachev, A. Shuklinov, Modification of aluminum antifriction alloys by carbon nanomaterials, Science+Business Media, Springer, (2011).


[5] J. Zhou, J. Li, S. Xu, S. Huang, X. Meng, J. Sheng, H. Zhang, Y. Sun, A. Feng, Improvement in fatigue properties of 2024-T351 aluminum alloy subjected to cryogenic treatment and laser peening, Surface and Coatings Technology 345 (2018) 31-39.


[6] M. Prudhomme, F. Billy, J. Alexis, G. Benoit, F.Hamon, C.Larignon, G.Odemer, C. Blanc, G.Hénaff, Effect of actual and accelerated ageing on microstructure evolution and mechanical properties of a 2024-T351 aluminium alloy,International Journal of Fatigue 107 (2018) 60-71.


[7] V. Hutsaylyuk, L. Snieżek, M. Chausov, J. Torzewski, A. Pylypenko, M. Wachowski, Cyclic deformation of aluminium alloys after the preliminary combined loading, Engineering Failure Analysis 69 (2016) 66-76.

[8] H. Mayer, R. Schuller, M.Fitzka, Fatigue of 2024-T351 aluminium alloy at different load ratios up to 10 10 cycles, International Journal of Fatigue 57 (2013) 113-119.

[9] S. Khan, A. Vyshnevskyy, J. Mosler, Low cycle lifetime assessment of Al2024 alloy, International Journal of Fatigue 32(8) (2010) 1270-1277.


[10] A. Gautam, P.K. Sarkar, R. Jangid, K.P. Ajit, Ductile and Fatigue Behaviour Estimation of Lightweight High-Strength Al 2024, Materials Today: Proceedings 5(2) (2018) 7873-7881.


[11] P. Kulkarni, Evaluation of Mechanical Properties of AL 2024 Based Hybrid Metal Composites, IOSR Journal of Mechanical and Civil Engineering 12(5) (2015) 108-122.

[12] Jianzhong Zhou, Suqiang Xu, Shu Huang, XiankaiMeng, Jie Sheng, Haifeng Zhang, Jing Li,Yunhui Sun and Emmanuel Agyenim Boateng, Tensile Properties and Microstructures of a 2024-T351 Aluminum Alloy Subjected to Cryogenic Treatment, Metals 6(11) (2016 279б.


[13] Information on