Effect of UDC Casting on Hot Deformation Behavior and Properties of 2A14 Aluminum Alloy


Article Preview

Uniform direct chill (UDC) casting is coupled annular electromagnetic stirring and intercooling, having been utilized for the preparation of large-sized aluminum alloy billet. In this paper, the UDC casting was applied to 2A14 aluminum alloy billets with a diameter of 584 mm. Hot compression tests, cogging and ring rolling procedures were carried out for the billets, respectively. The results show that during the deformation temperature of 420 °C and the strain rate of 0.01 s1 to 10 s1, the flow stresses of different positions are higher and more stable in the UDC casting billet than in the normal direct chill (NDC) casting billet. The dislocation glide is the dominant deformation mechanism of 2A14 aluminum alloy. Meanwhile, the UDC casting significantly improves the mechanical properties of the rolled rings in tangential and axial directions compared with the NDC casting.



Edited by:

Prof. Yafang Han




Y. Qiu et al., "Effect of UDC Casting on Hot Deformation Behavior and Properties of 2A14 Aluminum Alloy", Materials Science Forum, Vol. 944, pp. 46-51, 2019

Online since:

January 2019




* - Corresponding Author

[1] H.J. Zhang, M. Wang, X. Zhang, G.X. Yang, Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy, J. Mater. Des. 65 (2015) 559-566.

DOI: https://doi.org/10.1016/j.matdes.2014.09.068

[2] H.L. Qin, H. Zhang, D.T. Sun, Q.Y. Zhuang, Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy, J. Int. J. Miner., Metall. Mater. 22 (2015) 627-638.

DOI: https://doi.org/10.1007/s12613-015-1116-9

[3] D.G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, Boca Raton, (2008).

[4] Y.J. Luo, Z.F. Zhang, B. Li, M.W. Gao, Y. Qiu, M. He, Effects of Annular Electromagnetic Stirring Coupled with Intercooling on Grain Refinement and Homogeneity During Direct Chill Casting of Large-Sized 7005 Alloy Billet, J. JOM. 69 (2017) 2640-2643.

DOI: https://doi.org/10.1007/s11837-017-2340-8

[5] Y. Qiu, Z.F. Zhang, Y.J. Luo, M.W. Gao, B. Li, C.S. Chen, Effect of coupled annular electromagnetic stirring and intercooling on the microstructures, macrosegregation and properties of large-sized 2219 aluminum alloy billets, J. Int. J. Mater. Res. 109 (2018) 469-475.

DOI: https://doi.org/10.3139/146.111620

[6] X.Y. Liu, Q.L. Pan, Y. B. He, W. B. Li, W. J. Liang, Z. M. Yin, Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation, J. Mater. Sci. Eng., A 500 (2009) 150-154.

DOI: https://doi.org/10.1016/j.msea.2008.09.028

[7] J. Zhang, B.Q. Chen, B.X. Zhang, Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy, J. Mater. Des. 34 (2012) 15-21.

DOI: https://doi.org/10.1016/j.matdes.2011.07.061

[8] Sanjib Banerjee, P. S. Robi, A. Srinivasan, Prediction of hot deformation behavior of Al–5.9%Cu–0.5%Mg alloys with trace additions of Sn, J. J. Mater. Sci. 47 (2012) 929-948.

DOI: https://doi.org/10.1007/s10853-011-5873-1

[9] Y.B. Yang, Z.M. Zhang, X.B. Li, Q. Wang, Y.H. Zhang, The effects of grain size on the hot deformation and processing map for 7075 aluminum alloy, J. Mater. Des. 51 (2013) 592-597.

DOI: https://doi.org/10.1016/j.matdes.2013.04.034

[10] H.R. Rezaei Ashtiani, M.H. Parsa, H. Bisadi, Effects of initial grain size on hot deformation behavior of commercial pure aluminum, J. Mater. Des. 42 (2012) 478-485.

DOI: https://doi.org/10.1016/j.matdes.2012.06.021