Fiber Concrete for Industrial and Civil Construction


Article Preview

In the article the questions of application of a steel fiber for disperse reinforcing of fine-grained concrete are considered. Main filler of a fiber concrete mix was the KMA industrial sand enriched with sand. The carried-out researches showed advantage of a steel wave fiber before the anchor and flat milled. The optimal type of fiber is revealed, in which the greatest increase of strength and deformation characteristics is observed. Thus, it can be concluded that the type of steel reinforcing fiber and its shape have a significant impact on the length of building structures and buildings as a whole.



Edited by:

Dr. Denis Solovev




S. V. Klyuev et al., "Fiber Concrete for Industrial and Civil Construction", Materials Science Forum, Vol. 945, pp. 120-124, 2019

Online since:

February 2019




* - Corresponding Author

[1] Richard P, Cheyrezy M., Composition of Reactive Powder Concrete. Scientific Division Bouygues, Cement and Concrete Research. 25 (7) (1995) 1501–1511.


[2] Brandt A.M. Cement-Based Composites: Materials, Mechanical Properties and Performance. Spon Press; 2 edition. (2009).

[3] Herr O., Les materiaux autocompactants essorables de structure (MACES). Etude de faisabilite d'une nouvelle gamme de materiaux hydrauliques pour les assises de chausses, Bulletin des laboratoires des Ponts et Chaussees. 232 (2001) 99–103.


[4] Lemm J.M., HB Fiber-Reinforced Concrete: Principles, Properties, Developments and Applications (Building Materials Science). William Andrew; illustrated edition Feb (1990).

[5] Maidl B., Steel Fibre Reinforced Concrete. Wiley-VCH, July (1995).

[6] Piasta J., Rheological properties of concretes with fine aggregate, Cement and Concrete Researh. 15 (2) (1985) 253–260.


[7] Steopoe A. Sur la structure des suspensions aqueueses des ciments purs ou mélanges et sur les propriestes techniques de ces suspensions durcies // Revue des Materiaux de conctructions. 508 (1981) 1–9.

[8] Takemura K., Some Properties of Concrete Using Crushed Stone Pust as Fine Aggregate, The Cement Association of Japan. 13-th General Meeting Technical Session. Tokyo. (1976) 95–97.

[9] Klyuev S.V., Klyuev A.V., Abakarov A.D., Shorstova E.S., Gafarova N.G., The effect of particulate reinforcement on strength and deformation characteristics of fine-grained concrete, Magazine of Civil Engineering. 7 (2017) 66–75.

[10] Klyuyev S.V., Klyuyev A.V., Sopin D.M., Netrebenko A.V., Kazlitin S.A., Heavy loaded floors based on fine-grained fiber concrete, Magazine of Civil Engineering. 3 (2013) 7–14.


[11] Klyuyev S.V., Guryanov Yu.V., External reinforcing of fiber concrete constructions by carbon fiber tapes, Magazine of Civil Engineering. 1 (2013) 21–26.


[12] Perfilov V.A., Heat-resistant lightweight fibre concrete at infuence of high temperatures, Concrete technology. 10 (87) (2013) 48–49.

[13] Perfilov V.A., Atkina A.V., Kusmartseva O.A., Fibre concretes with finely fibrous fillers, Low-rise construction in the framework of the national project affordable and comfortable housing for citizens of Russia: technologies and materials, problems and development prospects in Volgograd region, materials of the international scientific‐practical conference. 2009. Pp.

[14] Morozov V.I., Pukharenko Yu.V., Yushin A.V., The numerical investigations of double-span concrete beams strengthened with fiber reinforced plastics across the oblique section, Materials Physics and Mechanics. 1-2 (2017) 40–43.

[15] Pukharenko Yu.V., Features of the preparation of fibre concrete composites, Journal of civil engineers. 2 (2006) 72–78.

[16] Karpenko N.I., Travush V.I., Kaprielov S.S., Mishina A.V., Andrianov A.A., Bezgodov I.M., Study of physical-mechanical and rheological properties of high-strength steel fibre concrete, Architecture and construction. 1 (2013) 106–113.

[17] Rabinovich F.N., Baev S.M., The efficiency of the use of polymer fibres for disperse reinforcement of concrete, Industrial and civil construction. 8 (2009) 28–31.

[18] Lesovik R.V., Klyuyev S.V., Klyuyev A.V., Netrebenko A.V., Durachenko A.V., High-Strength Fiber-Reinforced Concrete Containing Technogenic Raw Materials and Composite Binders with Use of Nanodispersed Powder, Research Journal of Applied Sciences. 9 (2014) 1153–1157.


[19] Lesovik R.V., Klyuyev S.V., Klyuyev A.V., Netrebenko A.V., Yerofeyev V.T., Durachenko A.V., Fine-Grain concrete reinforced by polypropylene fiber, Research Journal of Applied Sciences. 10 (10) (2015) 624–628.

[20] Lesovik R.V., Klyuyev S.V., Klyuyev A.V., Tolbatov A.A., Durachenko A.V., The Development of textile fine-grained fiber concrete using technogenic raw materials, Research Journal of Applied Sciences. 10 (10) (2015) 701–706.

[21] Valeria Kretova, Tolya Hezhev, Azamat Zhukov, Khasanbi Hezhev., Fireproofind Cemented Fiber Vermiculite-Conkrete Composites with Application VolkanicAsh, Applied Mechanics and Materials. (2015) 725–726.


[22] Valeria Kretova, Tolya Hezhev, Timur Mataev, Khasanbi Hezhev, Amelin Vasily., Gypsumcementpozzolana Composites with Application Volcanic Ash, Procedia Engineering. 117 (2015) 206–210.