Scientific and Practical Bases of a Method of Reception of Thin-Layer Heat-Insulating Coverings

Abstract:

Article Preview

The paper presents a brief overview of the thin-layer thermal insulation paints used now and their characteristics. A new composition of thin-layer heat-insulation coating is proposed. The introduction of solid phases of non-autoclaved foam concrete with the average density D150 with high values of the standard entropy of formation in it is scientifically substantiated from the point of view of increasing the thermal protection properties. It is shown that such phases have an advantage in comparison with the solid phases of the glass and ceramic microspheres used now. It is also proved that the presence of thin-layer thermal insulation coating of nanoscale particles in the form of silica in the composition favours the reflection of the incident heat flux due to the Tindal effect and provides an increase in the polydispersity of the composition. The calculation of the resulting composition by the Van Vleсk formula used in the classical science is given.

Info:

Periodical:

Edited by:

Dr. Denis Solovev

Pages:

257-262

Citation:

A.M. Sychova et al., "Scientific and Practical Bases of a Method of Reception of Thin-Layer Heat-Insulating Coverings", Materials Science Forum, Vol. 945, pp. 257-262, 2019

Online since:

February 2019

Export:

Price:

$41.00

[1] Chumakova L. I., Skorikov M. Y., Stepanyan T. G., Morozov M. V., Messengers D. M., Thermal characteristics of liquid ceramic heat-insulating material based on aluminosilicate, and sodium borosilicate microspheres, Modern scientific researches and innovations. 1 (2016).

[2] Plotnikov V. V., Bogatovskiy M. V., Innovative building envelope and materials to accomplish resourcemanager.getimage construction, Biosphere-technology. 4 (2015) 35-44.

[3] Pavlov M. V., Karpov D. F., Yurchik M. S., Smirnova V. Yu., Tikhomirov S. N., Results of application of liquid thermal insulation on the section of the main pipeline of the district heating system, Vestnik MGSU. 10 (2013) 147-155.

DOI: https://doi.org/10.22227/1997-0935.2013.10.14-155

[4] Karpov D. F., Pavlov, M. V., Sinitsyn A. A., Kolyagin Yu. A., Mnushkin N. In., Determination of thermal conductivity coefficient of thermal insulation in the pipeline section of the district heating system, Mechanization of construction. 9 (2014) 30–34.

[5] Anisimov M. V., Rekunov V. S. Experimental determination of the coefficient of thermal conductivity of ultrathin liquid insulating composite coatings, proceedings of the Tomsk Polytechnic University. Engineering of geo-resources-2015. 9 (2015) 15-22.

[6] Kompan M. E., Kompan F. M., Gladkikh, P. V., Terukov E. I., Rupchev V. G., Chetaev Y. V., The thermal conductivity of a composite medium with dispersed grafenauer filler, technical physics, 8 (2011) 15-19.

DOI: https://doi.org/10.1134/s1063784211080159

[7] Orlov E. Yu., Belskaya G. N., Kuzmenko A. P., the Development of heat-insulating nanocomposite by using Sol-gel technology for use in the aviation industry. Modern materials, equipment and technologies. Article in proceedings of the conference. (2015).

[8] Mukhopadhyay A.K. Next-Generation Nano-based Concrete Construction Products: A Review. In: Gopalakrishnan K., Birgisson B., Taylor P., Attoh-Okine N.O. (eds) Nanotechnology in Civil Infrastructure. Springer, Berlin, Heidelberg. (2011).

DOI: https://doi.org/10.1007/978-3-642-16657-0

[9] C,olak A Density and strength characteristics of foamed gypsum. Cement Concr Compos 22:193–200. (2000).

[10] D. Sanz-Pont . D. Sanz-Arauz . C. Bedoya-Frutos . R. J. Flatt . S. Lo´pez-Andre´s., Anhydrite/aerogel composites for thermal insulation. Materials and Structures. (2016) 49:3647–3661..

[11] Hong S.K., Yoon M.Y., Hwang H.J. Fabrication of spherical silica aerogel granules from water glass by ambient pressure drying. J Am Ceram Soc 94:3198–3201. (2011)..

[12] A.Sychova, M.Sychov, E.Rusanova., A Method Of Obtaining Geonoiseprotective Foam Concrete For Use On Railway Transport. Subgrade Transportation Geotechnics and Geoecology, TGG 2017, Procedia Engineering. 189 (2017) 681–687.

DOI: https://doi.org/10.1016/j.proeng.2017.05.108

[13] Ferch H., Oelmuller R., Grinschgl B., Syntetic Silica as a Flow Aid and Carrier Substance. Degussa Tech. Bull. 31 (2004).

[14] Bode R., Ferch H., Fratzscher H. Basic characteristics of Aerosil. – Degussa Tech. Bull. 11 (2006).

[15] Bardakhanov S., Zavialov A., Zobov K., Lysenko V., Nomoi A., Abanin, V., Trufanov D. determination of the coefficient of thermal conductivity nanopowders of silicon dioxide. // Nanoindustry. 5 (2008) 24-26.

[16] E. A. Shchukin, A.V. Pertsov, E. A. Amelina, Colloidal chemistry: Textbook for universities and chemical technology. Universities, - 5th ed., Spanish. Moscow. Higher. SHK., (2007).

[17] Elyashevich M. A. Atomic and molecular spectroscopy. Moscow: Fizmatgiz, (1962).

[18] Sychova, A. Solomahin, A. Hitrov. The Increase Of The Durability And Geoprotective Properties Of The Railway. Subgrade Transportation Geotechnics and Geoecology, TGG 2017, Procedia Engineering. 189 (2017) 688–694.

DOI: https://doi.org/10.1016/j.proeng.2017.05.109

[19] L.Svatovskaya, M.Sychov, A.Sychova, M.Gravit. New Geoecoprotective Properties Of The Construction Materials For Underground Infrastructure Development. 15th International scientific conference Underground Urbanisation as a Prerequisite for Sustainable Development,. Procedia Engineering. 165 (2017) 1771–1775.

DOI: https://doi.org/10.1016/j.proeng.2016.11.921

[20] Svatovskaya L. B., Korchin D. V., Patent of the Russian Federation RU2278839. (2017).

[21] G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids: A review, Renewable and Sustainable Energy Reviews. 14 (2010) 1913–(1924).

DOI: https://doi.org/10.1016/j.rser.2010.03.017

[22] D. Kuvshinov, M.R. Bown, J.M. MacInnes, R.W.K. Al_len, R. Ge, L. Aldous, C. Hardacre, N. Doy, M.I. Newton, G. McHale, Thermal conductivity measurement of liquids in a microuidic device, Microfluid Nanofluid. 256 (2011) 123–132.

DOI: https://doi.org/10.1007/s10404-010-0652-x

[23] Gustavson M., Nagai H., Okutani T., Thermal effusivity measure_ments of insulating liquids using microsized hot stripprobes, Rev. Sci. Instrum. 5018 (2003) 4542–4548.

DOI: https://doi.org/10.1063/1.1606537

[24] Hammerschmidt U. A., quasi_steady state technique to measure the thermal conductivity, Int. J. Thermophys. 355 (2003) 291–312.

[25] Kuntner J., Kohl F., Jakoby B., Simultaneous thermal conductivi_ty and diffusivity sensing in liquids using a micromachined device, Sens Actuators. 128 (2006) 62–67.

DOI: https://doi.org/10.1016/j.sna.2005.11.021

[26] H. Xie, H. Gu, M. Fujii, X. Zhang, Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials, Meas. Sci. Technol. 312 (2006) 208–214.

DOI: https://doi.org/10.1088/0957-0233/17/1/032

[27] Zhang H., Zhao G., Ye H., Ge X., Cheng S., An improved hotprobe for measuring thermal conductivity of liquids, Meas. Sci. Technol. 535 (2005) 430–435.

[28] L. Van Vleck, Theoretical and applied materials science. Per. from English. M., Atomizdat., (1975).