Welding Polymer Pipes at Low Climatic Temperatures

Abstract:

Article Preview

The results of the research on development of technology for welding polymer pipes at low climatic temperatures in open air without the use of temporary heated structures are presented. The most common welding methods are considered: butt welding with a heated tool, electrofusion welding with embedded heating element and socket welding. Tests on welded joints show that the developed technology for welding in open air without the construction of shelters provides the same level of quality as when welding at admissible temperatures.

Info:

Periodical:

Edited by:

Dr. Denis Solovev

Pages:

379-383

Citation:

N.P. Starostin et al., "Welding Polymer Pipes at Low Climatic Temperatures", Materials Science Forum, Vol. 945, pp. 379-383, 2019

Online since:

February 2019

Export:

Price:

$41.00

[1] Set of Rules SP 40-101-96 Design and instruction from polipropilene «Random copolimer». GUP TsPP, Moscow, (1997).

[2] G.K. Kaygorodov, V.Yu. Kargin, Truboprovody i ekologiya. 2 (2001) 13-14.

[3] O.M. Alifanov, Inverse problems of heat exchange. Mashinostroenie, Moscow, (1988).

[4] A.A. Samarskiy, P.N. Vabishchevich, Numerical methods of solution of the inverse problems of mathematical physics, Editorial URSS, Moscow, (2004).

[5] J.V. Beck, B. Blackwell, C.R. Jr. Clair, Inverse Heat Conduction. III-posed problems. A Wiley – Interscience Publication, New York, (1985).

[6] C.-S. Liu, An Iterative Algorithm for Identifying Heat Source by Using a DQ and a Lie-Group Method, Inverse Problems in Science and Engineering, 23 (2015) 67-92.

DOI: https://doi.org/10.1080/17415977.2014.880907

[7] W.L. Chen, Y.C. Yang, S.S. Chu, Estimation of heat generation at the interface of cylindrical bars during friction process, Appl. Thermal Engineering. 29 (2009) 351-357.

DOI: https://doi.org/10.1016/j.applthermaleng.2008.03.001

[8] W. L. Chen, Y. C. Yang, Inverse problem of estimating the heat flux at the roller/workpiece interface during a rolling process, Appl. Thermal Engineering, 30 (2010) 1247-1254.

DOI: https://doi.org/10.1016/j.applthermaleng.2010.02.007

[9] N.P. Starostin, A.I. Gerasimov, O.A. Ammosova, RF Patent 2343331 (2009).

[10] N.P. Starostin, G.V. Botvin, E.V. Danzanova, RF Patent 2450202 (2012).

[11] Z. Chebbo, M. Vincent, A. Boujlal, D. Gueugnaut, Y. Tillier, Numerical and experimental study of the electrofusion welding process of polyethylene pipes, Polym. Eng. Sci, 55 (2014) 123–131.

DOI: https://doi.org/10.1002/pen.23878

[12] N.P. Starostin, O.A. Ammosova, G.V. Botvin, Thermal process of welding polypropylene pipes in a size at low temperatures, Welding and Diagnostics, 6 (2015) 57-61.

[13] N.P. Starostin, O.A. Ammosova, Simulation of the thermal process of butt welding of polyethylene pipes at low temperatures, Journal of engineering physics and thermophysics, 3 (2016) 706-713.

[14] N.P. Starostin, O.A. Ammosova, Management of thermal process of welding polyethylene pipes at low temperatures, Svarochnoe proizvodstvo, 6 (2013) 16-19.

[15] M. Rojek, J. Stabik, G. Muzia, Thermography in plastics welding processes assessment, Journal of Achievements in Materials and manufacturing Engineering, 41 (2010) 40-47.

[16] A. Dasari, R.D.K. Misra, Microscopic aspects of surface deformation and fracture of high density polyethylene, Materials Science and Engineering Group: А, 367 (2004) 248-260.

DOI: https://doi.org/10.1016/j.msea.2003.10.202

[17] Tarek M.A.A. El-Bagory, Hossam E.M. Sallam, Maher Y.A. Younan, Effekt of strain rate, thickness, welding on the J-R curve for polyethylene pipe materials, Theoretical and fracture Mechanics, 74 (2014) 164-180.

DOI: https://doi.org/10.1016/j.tafmec.2014.09.008

[18] J. Cazenave, R. Seguela, B. Sixou, Y. Germain, Short term mechanical and structural approaches for the evaluation of polyethylene stress crack resistance, Polymer, 47 (2006) 3904- 3914.

DOI: https://doi.org/10.1016/j.polymer.2006.03.094

[19] F. Qi, L. Huo, Y. Zhang, H. Jing, Study on Fracture Properties of High-density Polyethylene (HDPE) Pipe, Key Engineering Materials, 261-263 (2004) 153-158.

DOI: https://doi.org/10.4028/www.scientific.net/kem.261-263.153

[20] A.L. Shurayts, V.Yu. Kargin, Yu.N. Vol'nov, Gas pipelines from polymeric materials, Zhurnal «Volga - XXI vek», Saratov, (2007).

[21] N.P. Starostin, A.I. Gerasimov, E.V. Danzanova, Welding of polymer pipes of gas pipelines at low temperatures, Welding international, 25 (2011) 981-983.

DOI: https://doi.org/10.1080/09507116.2011.581442

[22] N.P. Starostin, M.A. Vasil'eva, E.V. Danzanova, O.A. Ammosova, Butt welding of polyethylene pipes at low temperatures, Welding International, 27 (2013) pp.318-320.

DOI: https://doi.org/10.1080/09507116.2012.715915

[23] A.I. Guerasimov, Ye. V. Danzanova, A method for determining the strength of butt welded joints in polymer pipes, Welding International, 28 (2014) 75-76.

DOI: https://doi.org/10.1080/09507116.2013.796659

[24] N. P. Starostin, A. I. Gerasimov, E. V. Danzanova, G. V. Botvin, B. I. Andreev, Efficiency of electrofusion welding of polyethylene pipes at low ambient temperatures, Svarochnoe proizvodstvo, 11 (2017) 47-49.

[25] N.P. Starostin, E.V. Danzanova, V.V. Sivtseva, Mathematical modeling of the thermal process in electro socket welding of polyethylene pipes at low temperatures, Welding international, 26 (2012) 967-970.

DOI: https://doi.org/10.1080/09507116.2012.694640

[26] SP 42-103-2003. Designing and construction of gas pipelines from polyethylene pipes and reconstruction of worn out gas pipelines, Polimergaz, FGUP CPP, Moscow, (2003).

[27] A.I. Levin, F.I. Babenko, Ju.Ju. Fedorov, S.P. Fedorov, A.V. Posel'skaja, Evaluation of the quality of welding of reinforced polyethylene pipes using couplers with embedded heaters under low temperature conditions, Polzunovskij al'manah, 1-2 (2007) 101-104.

[28] V.A. Sokolov, M.A. Krasnikov, Evaluation of the quality of welding of polyethylene pipes using couplings with embedded heaters, Truboprovody i jekologija, 2 (2004) 7-8.

[29] ISO 13954 Plastics pipes and fittings – Peel decohesion test for polyethylene (PE) electrofusion assemblies of nominal outside diameter greater than or equal to 90 mm.

DOI: https://doi.org/10.3403/30180077u

[30] G.V. Botvin, E.V. Danzanova, B.I. Andreev, A.I. Gerasimov, RF Patent 2457449 (2012).