Microwave Modification of Polymer-Carbon Materials

Abstract:

Article Preview

Studies of microwave radiation on polymeric materials have shown the possibility of modifying the characteristics of materials. At the same time, the efficiency of the microwave effect can be increased by introducing into the polymer matrix electrically conductive particles (carbon, metal particles, etc.). In this case, the absorption coefficient of the microwave waves is greatly increased. The paper evaluated the physical and mechanical properties of polyamide 6 subjected to microwave exposure. To intensify the microwave, well-proven carbon nanotubes were used, which were added to the polymer in small amounts. The most effective was the addition of carbon nanotubes in an amount of 1 wt%. The data obtained are changes in strength under tensile, Shore D hardness conditions, as well as thermophysical characteristics (heat resistance and change in the specific energy absorption rate in the melting zone of the samples). Microwave can be used as a modifying radiation, and as a method of heating polymers for subsequent molding in products. This method significantly reduces the technological process of obtaining materials and products with improved performance characteristics.

Info:

Periodical:

Edited by:

Dr. Denis Solovev

Pages:

443-447

Citation:

D. Zavrazhin and C. Zavrazhina, "Microwave Modification of Polymer-Carbon Materials", Materials Science Forum, Vol. 945, pp. 443-447, 2019

Online since:

February 2019

Export:

Price:

$41.00

[1] D.E. Clark, D.C. Folz, J.K. West, Processing materials with microwave energy. Mater. Sci. Eng. A. 287 (2000) 153–158.

[2] E.T. Thostenson, T.W. Chou, Microwave processing: fundamentals and applications. Composites: Part A. 30 (1999) 1055–1071.

[3] S.G. Kalganova, M.Yu. Morozova, The use of the nonthermal effect of microwave electromagnetic oscillations for modifying polycaproamide fibres, Elektrichestvo. 5 (2004) 44-46.

[4] G.S. Baronin, D.O. Zavrazhin, A.G. Popov, M.S. Tolstykh, Effect of microwave radiation on the formation of structure and mechanical properties of modified polymer –carbon materials in solid extension. Belgorod State Univ. Sci. bull.: Math. & Phys. 11 (2011) 123-128.

[5] J. Jacob, L.H.L. Chia, F.Y.C. Boey, Microwave polymerization of poly(methyl acrylate): conversion studies at variable power. J. Appl. Polym. Sci. 63 (1997) 787–797.

DOI: https://doi.org/10.1002/(sici)1097-4628(19970207)63:6<787::aid-app11>3.0.co;2-s

[6] F.Y.C. Boey, B.H. Yap, L.H.L. Chia, Microwave curing of epoxy-amine system: effect of curing agent on the rate enhancement. Polym. Test. 18 (1999) 93–109.

DOI: https://doi.org/10.1016/s0142-9418(98)00014-2

[7] H.S. Ku, F. Siu, E. Siores, J.A.R. Ball, Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites. J. Mater. Process. Technol. 139 (2003) 291–295.

DOI: https://doi.org/10.1016/s0924-0136(03)00238-3

[8] D.V.D.V. James, A.G. Erdman, Hot pin welding of thin poly(vinyl chloride) sheet. J. Vinyl Addit. Technol. 47 (2007) 110–115.

DOI: https://doi.org/10.1002/vnl.20111

[9] L. Zong, S. Zhou, N. Sgriccia, M.C. Hawley, L.C. Kempel, A review of microwave-assisted polymer chemistry (MAPC). J. Microw. Power Electromagn. Energy. 38 (2003) 49–74.

DOI: https://doi.org/10.1080/08327823.2003.11688487

[10] R. Benitez, A. Fuentes, K. Lozano, Effects of microwave assisted heating of carbon nanofiber reinforced high density polyethylene. J. Mater. Process. Technol. 190 (2007) 324–331.

DOI: https://doi.org/10.1016/j.jmatprotec.2007.02.016

[11] B. Galindo, A. Benedito, E. Gimenez, V. Compan, Comparative study between the microwave heating efficiency of carbon nanotubes versus multilayer graphene in polypropylene nanocomposites, Compos. Part B. 98 (2016) 330-338.

DOI: https://doi.org/10.1016/j.compositesb.2016.04.082

[12] J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez, Microwave heating processes involving carbon materials. Fuel Proces. Technol. 91 (2010) 1–8.

DOI: https://doi.org/10.1016/j.fuproc.2009.08.021

[13] M. Chen, E.J. Siochi, T.C. Ward, J.E. McGrath, Basic ideas of microwave processing of polymers. Polym. Eng. Sci. 33 (1993) 1092–1109.

DOI: https://doi.org/10.1002/pen.760331703

[14] C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, J. Guo, Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Appl. Phys. Lett. 87 (2005) 1-3.

DOI: https://doi.org/10.1063/1.2051806

[15] E. Kymakis, G.A.J. Amaratunga, Optical properties of polymer-nanotube composites. Synth. Met. 142 (2004) 161-167.

DOI: https://doi.org/10.1016/j.synthmet.2003.08.011

[16] P. Pötschke, S.M. Dudkin, I. Alig, Dielectric spectroscopy on melt processed polycarbonate - Multiwalled carbon nanotube composites. Polymer. 44 (2003) 5023-5030.

DOI: https://doi.org/10.1016/s0032-3861(03)00451-8

[17] S.B. Kharchenko, K.B. Migler, J.F. Douglas, J. Obrzut, E.A. Grulke, Rheology, processing and electrical properties of multiwall carbon nanotube/polypropylene nanocomposites, ANTEC 2004 - Annual Technical Conference Proceedings. Chicago. IL. United States. (2004) 1877-1881.

[18] R.K. Agrawal, L.T. Drzal, Effects of microwave processing on fiber–matrix adhesion in composites. J. Adhes. 29 (1989) 63–79.

[19] V.N. Studentsov, I.V. Pyataev, Effect of vibration in processes of structure formation in polymers. Rus. J. Appl. Chem. 87 (2014) 352-354.

DOI: https://doi.org/10.1134/s1070427214030173

[20] P. Zhihua, P. Jingcui, P. Yanfeng, O. Yangyu, N. Yantao, Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: A numerical study. Phys. Lett. A. 372 (2008) 3714-3718.

DOI: https://doi.org/10.1016/j.physleta.2008.02.015

[21] S.V. Mishchenko, D.O. Zavrazhin, C.V. Zavrazhina, E.N. Tugolukov, Numerical simulation of the temperature field and microwave absorption by carbon nanotubes and polymer composites. AIP Conf. Proc. 1915 (2017) 040040.

DOI: https://doi.org/10.1063/1.5017388