Study of Structure and Optical Density of Track Membranes

Abstract:

Article Preview

This work presents research results of surface, including optical characteristics of poly (ethylene terephthalate) film under the influence of heavy ion radiation and following chemical etching for use as light filter. The optical density of the films and track membranes was determined in the wavelength range of 310-990 nm. Optical density measurements were carried out with gap of 50 nm. Track membrane was researched with the track diameters of 300 nm and concentration of 4·108 см-1. It is determined, that the optical density of the initial film and irradiated are comparatively low in the entire researched wavelength range and does not exceed the value of 0.1. It is shown that for the track membrane in the ultraviolet region there is a sharp rise in the optical density values, at the wavelength of 650 nm to the maximum value, and the values gradually decrease in visible color and continue to decrease in the IR region.

Info:

Periodical:

Edited by:

Dr. Denis Solovev

Pages:

482-487

Citation:

V.I. Pavlenko et al., "Study of Structure and Optical Density of Track Membranes", Materials Science Forum, Vol. 945, pp. 482-487, 2019

Online since:

February 2019

Export:

Price:

$41.00

[1] J. Hautojarvi, K. Kontturi, J.H. Näsman, B.L. Svarfvar, P. Viinikka, and M. Vuoristo, Characterization of graft-modified porous polymer membranes, Ind. Eng. Chem. Res. 35 (1996) 450-457.

DOI: https://doi.org/10.1021/ie950223b

[2] Zhi-Bo He, S.-L.Guo, Applications of Nuclear Track Membranes to Filtration of Medical Injections and Various Transfusions to Remove Solid Particles, Phys. Procedia. 80 (2015) 131-134.

DOI: https://doi.org/10.1016/j.phpro.2015.11.081

[3] C.D. Lytle, L.B. Routson, N.B. Jain, M.R. Myers, and B.L. Green, Virus Passage through Track-Etch Membranes Modified by Salinity and a Nonionic Surfactant, Appl. Environ. Microbiol. 65 (1999) 2773–2775.

[4] E.O. Bosykh, V.V. Sohoreva, and V.F. Pichugin, Potential Use of Nuclear Track Membranes in Ophthalmology, Petrol. Chem. 54 (2014) 669–672.

DOI: https://doi.org/10.1134/s0965544114080039

[5] S.-L. Guo, Basic nature of nuclear track membranes for liquid media, New Astronomy Reviews. 42(1998) 205-216.

DOI: https://doi.org/10.1016/s1387-6473(98)00005-0

[6] L. Kravets, S. Dmitrieva, N. Lizunov, V. Satulu, B. Mitu, G. Dinescu, Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymerization of pyrrole vapors, Nucl. Instrum. Meth. Phys. Res. B. 268 (2010) 485-492.

DOI: https://doi.org/10.1016/j.nimb.2009.11.014

[7] V.A. Oleinikov, D.L. Zagorski, S.A. Bedin, A.A. Volosnikov, P.A. Emelyanov, Y.P. Kozmin, B.V. Mchedlishvili, The study of the desorption/ionization from the replicas of etched ion tracks. Radiat. Meas. 43 (2008) 635-638.

DOI: https://doi.org/10.1016/j.radmeas.2008.04.018

[8] D.L. Zagorskiy, S.A. Bedin, V.A. Oleinikov, N.B. Polyakov, O.G. Rybalko, B.V. Mchedlishvili, Metallic microwires obtained as replicas of etched ion tracks in polymer matrixes: microscopy and emission properties. Radiat. Meas. 44 (2009) 1123-1128.

DOI: https://doi.org/10.1016/j.radmeas.2009.10.049

[9] D. Dobrev, R. Neumann, N. Angert, J. Vetter, Formation of metal membranes by direct duplication of etched ion-track templates, Appl. Phys. A. 76 (2003) 787–790.

DOI: https://doi.org/10.1007/s00339-002-1494-5

[10] J. Vetter, SEM Investigations of Etched Heavy Ion Tracks, Scanning. 16 (1994) 118-122. D.L. Zagorskiy, V.V. Korotkov, K.V. Frolov, S.N. Sulyanova, V.N. Kudryavtsev, S.S. Kruglikov, S.A. Bedin, Track Pore Matrixes for the Preparation of Co, Ni and Fe Nanowires: Electrodeposition and their Properties, Phys. Procedia. 80 (2015) 144-147.

DOI: https://doi.org/10.1016/j.phpro.2015.11.090

[11] A.G. Chmielewski, D.K. Chmielewska, J. Michalik, and M.H. Sampa, Prospects and challenges in application of gamma, electron and ion beams in processing of nanomaterials, Nucl. Instrum. Meth. Phys. Res. B. 265 (2007) 339-346.

DOI: https://doi.org/10.1016/j.nimb.2007.08.069

[12] P. Apel, Track etching technique in membrane technology, Radiat. Meas. 34 (2001), 559-566.

[13] P.Yu. Apel, I.V. Blonskaya, O.L. Orelovitch, D. Root, V. Vutsadakis, S.N. Dmitriev, Effect of nanosized surfactant molecules on the etching of ion tracks: New degrees of freedom in design of pore shape, Nucl. Instrum. Meth. Phys. Res. B. 209 (2003) 329-334 |.

DOI: https://doi.org/10.1016/s0168-583x(02)02057-8

[14] L.I. Kravets, S.N. Dmitriev, V.V. Sleptsov, V.M. Elinson, Production of asymmetric track membranes by gas-discharge method, Surf. Coat. Technol. 174–175 (2003) 821-825.

DOI: https://doi.org/10.1016/s0257-8972(03)00627-3

[15] S.N. Dmitriev, L.I. Kravets, V.V. Sleptsov, Modification of track membrane structure by plasma etching, Nucl. Instrum. Meth. Phys. Res. B. 142. (1998) 43-49.

[16] C. Trautmann, W. Brüchle, R. Sphor, J.Vetter, N. Angert, Pore geometry of etched ion tracks in polyimide, Nucl. Instrum. Meth. Phys. Res. B. 111 (1996) 70–74.

DOI: https://doi.org/10.1016/0168-583x(95)01264-8

[17] M. Ulbricht, Advanced functional polymer membranes, Polym. 47 (2006) 2217–2262.

[18] J.S. Williams, R.G. Elliman, M.C. Ridgway, Ion Beam Modification of Materials, Newnes,  (2012).

[19] M. Dominique, A.V. Mitrofanov , J.F. Hochedez , P.Y. Apel, U. Schühle, F.A. Pudonin, O.L. Orelovich, S.Y. Zuev,  D. Bolsée ,  C. Hermans,  A. Ben Moussa, Track membranes with open pores used as diffractive filters for space-based X-ray and EUV solar observations, Appl. Opt. 48 (2009) 834–41.

DOI: https://doi.org/10.1364/ao.48.000834

[20] V. Premnath, W.H. Harris, M. Jasty, E.W. Merrill, Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem, Biomaterials. 17 (1996) 1741–1753.

DOI: https://doi.org/10.1016/0142-9612(95)00349-5

[21] S.G. Prasad, A. De, U. De, Structural and Optical Investigations of Radiation Damage in Transparent PET Polymer Films, Int. J. Spectrosc., (2011), Article ID 810936.

DOI: https://doi.org/10.1155/2011/810936

[22] I.A. Tsalafoutas ,  G.V. Papoutsis, P.N. Maniatis, K.A. Gogos, Optical density variations in CT films and their effect on image quality, Br. J. Radiol. 941 (2006) 425–431.

DOI: https://doi.org/10.1259/bjr/28579947

[23] A. Cosslett, V.E. Cosslett, The optical density and thickness of evaporated carbon films, Br. J. Appl. Phys. 8 (1957) 374–376.

DOI: https://doi.org/10.1088/0508-3443/8/9/308

[24] A.V. Mitrofanov, P.Y. Apel, I.V. Blonskaya, O. L. Orelovitch, Diffraction filters based on polyimide and poly(ethylene naphthalate) track membranes, Tech. Phys. 51 (2006) 1229–1234.

DOI: https://doi.org/10.1134/s1063784206090209

[25] D. B. Solovev, Selection of Digital Filter for Microprocessor Protection Relays, International Journal of Electrical and Computer Engineering (IJECE), 8 No. 3 (2018) 1498-1512. [Online]. Available: http://dx.doi.org/10.11591/ijece.v8i3.pp.1498-1512.

DOI: https://doi.org/10.11591/ijece.v8i3.pp1498-1512