Carbon Nanotubes in Composite Hydrogels Based on Plant Carbohydrates

Abstract:

Article Preview

Due to the physical, chemical, biological characteristics and high biocompatibility, the hydrogels based on plant polysaccharides and proteins became a sought-after material in many fields. Such hydrogels are the water swelling biopolymer matrices that react reversibly on minor changes in composition and in the external environment. However, the mechanical and electrical properties of "pure" hydrogels inhibit their wide practical application. One of approachs to improve their properties is the usage of carbon nanotubes, which provide good electrical conductivity and can significantly improve the characteristics of materials. The effects of carbon nanotubes on electric conductivity and mechanic properties of hydrogels based on natural biopolymers (gelatin and κ-carrageenan) of different composition were investigated. The electrical conductivity of the gels was studied using InoLab Cond 7310 SET1 conductometer. The rheological properties of hydrogels were investigated by Anton Paar MCR 302 rheometer. Such characteristics as temperature, frequency and amplitude dependencies of the storage modulus and the loss modulus of hydrogels were obtained. It was found that the addition of carbon nanotubes led to the increase in electrical conductivity of hydrogels. The morphology and rheological properties of studied hydrogels alter significantly in the presence of carbon nanotubes. The obtained data indicate the possibility of a purposeful change in electrical and mechanical properties of hydrogels by the addition of carbon nanotubes.

Info:

Periodical:

Edited by:

Dr. Denis Solovev

Pages:

522-527

Citation:

O.S. Zueva et al., "Carbon Nanotubes in Composite Hydrogels Based on Plant Carbohydrates", Materials Science Forum, Vol. 945, pp. 522-527, 2019

Online since:

February 2019

Export:

Price:

$41.00

[1] N. Chirani, L.H. Yahia, L. Gritsch, F.L. Motta, S. Chirani, S. Fare, History and Applications of Hydrogels, J. Biomed. Sci. 4 (2) (2015) 13.

[2] A.S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews 64 (2012) 18-23.

[3] B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Hydrogels in regenerative medicine, Adv. Mater. 21 (32-33) (2009) 3307-3329.

DOI: https://doi.org/10.1002/adma.200802106

[4] Y. Li, J. Rodrigues, H. Tomás, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications, Chem. Soc. Rev. 41(6) (2012) 2193-221.

DOI: https://doi.org/10.1039/c1cs15203c

[5] B. Sarker, D.G. Papageorgiou, R. Silva, T. Zehnder, F. Gul-E-Noor, M. Bertmer, J. Kaschta, K. Chrissafis, R. Detsch, A.R. Boccaccini, Fabrication of Alginate-Gelatin Crosslinked Hydrogel Microcapsules and Evaluation of the Microstructure and Physico-Chemical Properties, Journal of Materials Chemistry B 2 (2014) 1470.

DOI: https://doi.org/10.1039/c3tb21509a

[6] N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L.E. Bertassoni, C. Cha, G. Camci-Unal, M.R. Dokmeci, N.A. Peppas, A. Khademhosseini, 25th anniversary article: rational design and applications of hydrogels in regenerative medicine, Adv. Mater. 26 (1) (2014) 85–124.

DOI: https://doi.org/10.1002/adma.201303233

[7] A. Pettignano, M. Häring, L. Bernardi, N. Tanchoux, F. Quignard, D.D. Díaz, Self-healing alginate–gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters, Mater. Chem. Front. 1 (2017) 73-79.

DOI: https://doi.org/10.1039/c6qm00066e

[8] B. Balakrishnan, N. Joshi, A. Jayakrishnan, R. Banerjee, Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration, Acta biomaterialia 10 (8) (2014) 3650-3663.

DOI: https://doi.org/10.1016/j.actbio.2014.04.031

[9] Y. Pranoto, C.M. Lee, H.J. Park, Characterizations of fish gelatin films aged with gellan and κ-carrageenan, LWT - Food Science and Technology 40(5) (2007) 766-774.

DOI: https://doi.org/10.1016/j.lwt.2006.04.005

[10] V.A. Izumrudov, Self-assembly and molecular recognition, phenomena in solutions of (bio)polyelectrolyte complexes, Russian Chemical Reviews, 77 (4) (2008) 381–393.

DOI: https://doi.org/10.1070/rc2008v077n04abeh003767

[11] N. Devi, M. Kumar, Genipin crosslinked microcapsules of gelatin A and κ-carrageenan polyelectrolyte complex for encapsulation of Neem (Azadirachta Indica A.Juss.) seed oil, Polym. Bull. 65 (2010) 347-362.

DOI: https://doi.org/10.1007/s00289-010-0246-5

[12] S.R. Derkach, N.G. Voron'ko, A.A. Maklakova, Yu.V. Kondratyuk, The rheological properties of gelatin gels containing κ-carrageenan: the role of polysaccharide, Colloid Journal 76 (2) (2014) 146-152.

DOI: https://doi.org/10.1134/s1061933x14020021

[13] S.R. Derkach, S.O. Ilyin, A.A. Maklakova, V.G. Kulichikhin, A.Y. Malkin. The rheology of gelatin hydrogels modified by k-carrageenan, LWT - Food Science and Technology 63 (2015) 612-619.

DOI: https://doi.org/10.1016/j.lwt.2015.03.024

[14] S.R. Derkach, N.G. Voron'ko, Yu.A. Kuchina, D.S. Kolotova, A.M. Gordeevа, D.A. Faizullin, Yu.A. Gusev, Yu.F. Zuev, O.N. Makshakova, Molecular structure and properties of κ-carrageenan-gelatin gels, Carbohydrate Polymers 197 (2018) 66-74.

DOI: https://doi.org/10.1016/j.carbpol.2018.05.063

[15] N.G. Voron'ko, S.R. Derkach, M.A. Vovk, P.M. Tolstoy, Formation of κ-carrageenan–gelatin polyelectrolyte complexes studied by 1H NMR, UV spectroscopy and kinematic viscosity measurements, Carbohydrate Polymers 151 (2016) 1152–1161.

DOI: https://doi.org/10.1016/j.carbpol.2016.06.060

[16] N.G. Voron'ko, S.R. Derkach, M.A. Vovk, P.M. Tolstoy, Complexation of κ-carrageenan with gelatin in the aqueous phase analysed by 1H NMR kinetics and relaxation, Carbohydrate Polymers 169 (2017) 117–126.

DOI: https://doi.org/10.1016/j.carbpol.2017.04.010

[17] C. Schmitt, S.L. Turgeon, Protein/polysaccharide complexes and coacervates in food systems, Adv. Colloid Interface Sci. 167 (2011) 63–70.

DOI: https://doi.org/10.1016/j.cis.2010.10.001

[18] S. Van Vlierberghe, P. Dubruel, E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review, Biomacromolecules 12(5) (2011) 1387-1408.

DOI: https://doi.org/10.1021/bm200083n

[19] S. Khorshidi, A. Karkhaneh, A self–crosslinking tri–component hydrogel based on functionalized polysaccharides and gelatin for tissue engineering applications, Materials Letters 164 (2016) 468–471.

DOI: https://doi.org/10.1016/j.matlet.2015.11.041

[20] M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery, Advanced Drug Delivery Reviews 60 (2008) 1638–1649.

DOI: https://doi.org/10.1016/j.addr.2008.08.002

[21] M. H. G. Wichmann, J. Sumfleth, F. H. Gojny, M. Quaresimin, B. Fiedler, K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties—benefits and limitations of a nanoparticle modified matrix, Engineering Fracture Mechanics 73 (16) (2006) 2346–2359.

DOI: https://doi.org/10.1016/j.engfracmech.2006.05.015

[22] B.S. Harrison, A. Atala, Carbon nanotube applications for tissue engineering, Biomaterials 28(2) (2007) 344–353.

DOI: https://doi.org/10.1016/j.biomaterials.2006.07.044

[23] S.R. Shin, et al., Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators, ASC Nano 7(3) (2013) 2369–2380.

[24] A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite hydrogels for biomedical applications, Biotechnol Bioeng. 111(3) (2014) 441–453.

DOI: https://doi.org/10.1002/bit.25160

[25] A. Motealleh, N.S. Kehr, Nanocomposite Hydrogels and Their Applications in Tissue Engineering, Adv. Healthc. Mater. 6(1) (2017) 1600938.

DOI: https://doi.org/10.1002/adhm.201600938

[26] S. Haider, S.-Y. Park, K. Saeed, B.L. Farmer, Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes, Sensors and Actuators B 124 (2007) 517–528.

DOI: https://doi.org/10.1016/j.snb.2007.01.024

[27] O.S. Zueva, V.V. Salnikov, Yu.N. Osin, Yu.F. Zuev, Influence of carbon nanotubes on surfactants supramolecular structures, Liq. Cryst. and their Appl. 16 (1) (2016) 90-96.

DOI: https://doi.org/10.18083/lcappl.2016.1.90

[28] O.S. Zueva, V.V. Salnikov, D.A. Faizullin, S.R. Derkatch, Yu.F. Zuev, Structure and Properties of Complexes of Polysaccharides with Carbon Nanotubes, Achievements in the Life Sciences, 10 (2016) S64.

[29] O.S. Zueva, Y.N. Osin, V.V. Salnikov, Y.F. Zuev, Research of carbon nanotubes suspensions: the emergence of mesoscopic structures from the self-assembly of surfactant molecules, Fundamental research 11 (2014) 1021-1027 [in Russian].

[30] O. S. Zueva, et al., Structure and properties of aqueous dispersions of sodium dodecyl sulfate with carbon nanotubes, Russ. Chem. Bull. 65 (2016) 1208-1215.

DOI: https://doi.org/10.1007/s11172-016-1437-5