Effect of Particular Combinations of Quenching, Tempering and Carburization on Abrasive Wear of Low-Carbon Manganese Steels with Metastable Austenite


Article Preview

The effect of quenching from 900°C (20 min exposure) and different tempering in the 250-650°C (for 1 hour) interval, as well as additionally preliminary carburization for 8 hours at 930°C, followed by a similar heat treatment on abrasive and shock-abrasive wear of low-carbon manganese (10-24%Mn) steels, phase composition and mechanical properties was studied. It was confirmed that an increase in the manganese reduces the abrasive wear resistance and increases the impact-abrasive wear resistance. The expediency of carburization of low-carbon manganese steels is shown in order to obtain the residual austenite in the structure which amount and stability must be optimized in relation to specific abrasive impact characterized by the dynamic ratio with taking into account the chemical composition.



Edited by:

Dr. Denis Solovev




L.S. Malinov et al., "Effect of Particular Combinations of Quenching, Tempering and Carburization on Abrasive Wear of Low-Carbon Manganese Steels with Metastable Austenite", Materials Science Forum, Vol. 945, pp. 574-578, 2019

Online since:

February 2019




* - Corresponding Author

[1] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science. 15(4) (2011) 141-168.

DOI: https://doi.org/10.1016/j.cossms.2011.04.002

[2] M. Abbasi, S. Kheirandish, Y. Kharrazi, J. Hejazi, On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels. Wear. 268(1-2) (2010) 202-207.

DOI: https://doi.org/10.1016/j.wear.2009.07.010

[3] M.M. Atabaki, S. Jafari, H. Abdollah-pour, Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel – A Comparison. Journal of Iron and Steel Research. International. 19(4) (2012) 43-50.

DOI: https://doi.org/10.1016/s1006-706x(12)60086-7

[4] R. Lencina, C. Caletti, K. Brunelli, R. Micone, Assessing Wear Performance of Two High-carbon Hadfield Steels Through Field Tests in the Mining Industry. Procedia Materials Science. 9 (2015) 358-366.

DOI: https://doi.org/10.1016/j.mspro.2015.05.005

[5] V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Pastukhova, Yu.G. Chabak, K Kusumoto, Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method, International Journal of Minerals. Metallurgy, and Materials. 23(6) (2016) 645-657.

DOI: https://doi.org/10.1007/s12613-016-1277-1

[6] G.A. Baglyuk, L.A. Posnyak, Powder Metallurgy Wear-Resistant Materials Based on Iron. Part 1. Materials Prepared by Sintering and Infiltration. Powder Metallurgy and Metal Ceramics. 40(1-2) (2001) 34-39.

DOI: https://doi.org/10.1023/a:1011399504008

[7] G.M. Krolczyk, P. Nieslony, S. Legutko, Determination of tool life and research wear during duplex stainless steel turning. Archives of Civil and Mechanical Engineering. 15(2) (2015) 347-354.

DOI: https://doi.org/10.1016/j.acme.2014.05.001

[8] V.B. Tarel'nyk, O.P. Gaponova, Ye.V. Konoplyanchenko, M.Ya. Dovzhyk, Investigation of Regularities of the Processes of Formation of Surface Layers with Electroerosive Alloying. Part I. Metallofiz. Noveishie Tekhnol.. 38(12) (2016) 1611-1633.

DOI: https://doi.org/10.15407/mfint.38.12.1611

[9] A.K. Srivastava, K. Das, Microstructure and abrasive wear study of (Ti,W)C-reinforced high-manganese austenitic steel matrix composite. Materials Letters. 62(24) (2008) 3947-3950.

DOI: https://doi.org/10.1016/j.matlet.2008.05.049

[10] A.V. Grushko, V.V. Kukhar, Yu.O. Slobodyanyuk, Phenomenological Model of Low-Carbon Steels Hardening during Multistage Drawing. Solid State Phenomena. 265 (2017) 114-123.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.265.114

[11] A.V. Aborkin, V.E. Vaganov, A.N. Shlegel', I.M. Bukarev, Effect of Laser Hardening on Die Steel Microhardness and Surface Quality. Metallurgist. 59(7-8) (2015) 619-625.

DOI: https://doi.org/10.1007/s11015-015-0148-8

[12] M.J. Merwin, Low-Carbon Manganese TRIP Steels. Materials Science Forum. 539-543 (2007) 4327-4332.

DOI: https://doi.org/10.4028/www.scientific.net/msf.539-543.4327

[13] S.P.S. Yadav, S. Ranganatha, G.M. Sandeep, S. Sharieff, Abrasive Wear Trends of Non-Conforming Contact Surfaces. Materials Today: Proceedings. 5(1) (2018) 152-160.

DOI: https://doi.org/10.1016/j.matpr.2017.11.066

[14] V. Kukhar, V. Artiukh, A. Butyrin, A. Prysiazhnyi, Stress-Strain State and Plasticity Reserve Depletion on the Lateral Surface of Workpiece at Various Contact Conditions during Upsetting. Advances in Intelligent Systems and Computing. Springer. 692 (2018) 201-211.

DOI: https://doi.org/10.1007/978-3-319-70987-1_22

[15] L.S. Malinov, V.L. Malinov, D.V. Burova, V.V. Anichenkov, Increasing the abrasive wear resistance of low-alloy steel by obtaining residual metastable austenite in the structure. Journal of Friction and Wear. 36(3) (2015) 237-240.

DOI: https://doi.org/10.3103/s1068366615030083

[16] L.S. Malinov, V.A. Kharlashkin, A.O. Bakumа, Increasing mechanical properties and wear resistance of steel 42 by obtaining the multiphase metastable structure. Metallurgical and Mining. Industry. 4(2) (2012) 34-39.

[17] A.S. Anishchenko, Heat treatment effect on properties of deformed alloy type 36N. Metallovedenie i Termicheskaya Obrabotka Metallov. 4 (1996) 31-32.