Features of the Structural-Phase State of the Diamond-Matrix Boundary Zone in Diamond-Containing Composite Materials


Article Preview

Preliminary metallization of the diamond component, which promotes the formation of chemical bonds on the diamond-matrix contact during subsequent sintering, is used to increase the strength of diamond retention and the durability of diamond-containing metal matrix composites. There are restrictions on carrying out metallization to create diamond composites with a cemented carbide matrix, since reheating the metallized coating at high sintering temperatures of carbide powders leads to its destruction, diamond graphitization and deterioration of the material properties. The structural-phase state in the diamond-matrix contact zone has been studied and the main factors providing the strength of diamond retention in diamond-cemented carbide composites obtained by hybrid technology that excludes the reheating of the metallized coating have been revealed. It was revealed, that the developed hybrid technology combining the thermal diffusion metallization of diamond and sintering according to the self-dosed impregnation scheme in one cycle ensures the production and preservation of the metallized coating by the methods of scanning electron microscopy, X-ray diffraction and X-ray phase analysis, Raman spectroscopy. Comparative tests have been carried out and it is shown that the specific productivity of experimental samples of a diamond tool (ruling pencils) with a metallized diamond component is on 39% higher than same parameter of pencils without metallization.



Edited by:

Dr. Denis Solovev




P.P. Sharin et al., "Features of the Structural-Phase State of the Diamond-Matrix Boundary Zone in Diamond-Containing Composite Materials", Materials Science Forum, Vol. 945, pp. 756-762, 2019

Online since:

February 2019




* - Corresponding Author

[1] H.K. Tönshoff, H. Hillmann-Apmann, J. Asche, Diamond tools in stone and civil engineering industry: cutting principles, wear and applications, Diamond and Relat. Mater. 11 (2002) 736-741.

DOI: https://doi.org/10.1016/s0925-9635(01)00561-1

[2] J. Konstanty, Powder Metallurgy Diamond Tools, Elsevier Ltd., (2005).

[3] W. F. Heinz, Diamonds, diamond bits, reaming shells, core barrels, in: Diamond Drilling Handbook, first ed., Routledge, London, 1992. pp.27-136.

[4] O. Ther, C. Colin, L. Gerbaud, A. Dourfaye, Effect of gradation by reactive imbibition on commercial WC-Co drilling tools used in oil and gas industries, 18th Plansee Seminar, Reutte, Austria, 2013, 14 p.

[5] A.F. Lisovsky, N.A. Bondarenko, The role of interphase and contact surfaces in the formation of structures and properties of diamond-(WC-Co) composites. A review, Journal of Superhard Materials. 36 (2014) 145-155.

DOI: https://doi.org/10.3103/s1063457614030010

[6] D.-d. Gu, Y.-f. Shen, P. Dai, M.-C. Yang, Microstructure and property of sub-micro WC–10% Co particulate reinforced Cu composite prepared by selective laser sintering, Trans. Nonferrous Met. Soc. China. 16 (2006) 357-362.

DOI: https://doi.org/10.1016/s1003-6326(06)60061-7

[7] D. Sivaprahasam, S. B. Chandrasekar, R. Sundaresan, Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering, Intl. J. of Refractory Metals and Hard Mater. 25 (2007) 144-152.

DOI: https://doi.org/10.1016/j.ijrmhm.2006.03.008

[8] Yu. I. Naidich, V. P. Umanskii, I. A. Lavrinenko, Strength of the diamond-metal interface and soldering of diamonds, CISP, Cambridge, (2007).

[9] Y. Z. Hsieh, S. T. Lin, Diamond tool bits with iron alloys as the binding matrices, Materials Chemistry and Physics. 72 (2001) 121-125.

DOI: https://doi.org/10.1016/s0254-0584(01)00419-9

[10] D.-P. Margaritis, Interfacial bonding in metal-matrix composites reinforced with metal-coated diamonds, PhD thesis, University of Nottingham, 2003, 345 p.

[11] M.Balasubramanian, Composite Materials and Processing. CRC Press, Taylor & Francis Group, (2014).

[12] T. Schubert, B. Trindade, T. Weißgärber, B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Materials Science and Engineering. 475 (2008) 39-44.

DOI: https://doi.org/10.1016/j.msea.2006.12.146

[13] J. Hell, M. Chirtoc, C. Eisenmenger-Sittner, H. Hutter, N. Kornfeind, P. Kijamnajsuk, M. Kitzmantel, E. Neubauer, K. Zellhofer, Characterisation of sputter deposited niobium and boron interlayer in the copper-diamond system, Surf. Coat. Technol. 208 (2012) 24-31.

DOI: https://doi.org/10.1016/j.surfcoat.2012.07.068

[14] M. Iravani, A. Khajepour, S. Corbin, S. Esmaeili, Pre-placed laser cladding of metal matrix diamond composite on mild steel, Surface and Coatings Technology. 206 (2012) 2089–(2097).

DOI: https://doi.org/10.1016/j.surfcoat.2011.09.027

[15] N. A. Bondarenko, V.A. Mechnik, M.V. Suprun, Shrinkage and Shrinkage Rate Behavior in Cdiamond–Fe–Cu–Ni–Sn–CrB2 System During Hot Pressing of Pressureless Sintered Compacts, Journal of Superhard Materials. 31 (2009) 232–240.

DOI: https://doi.org/10.3103/s1063457609040042

[16] Z. Hamid, S. Moustafa, F. Morsy, N. Khalifa, F. Mouez, Fabrication and characterization copper/diamond composites for heat sink application using powder metallurgy, Natural Science. 3 (2011) 936-947.

DOI: https://doi.org/10.4236/ns.2011.311120

[17] T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. Weigärber, B. Kieback, Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink application, Scripta Materialia. 58 (2008) 263-266.

DOI: https://doi.org/10.1016/j.scriptamat.2007.10.011

[18] C. Artini, M.L. Muolo, A. Passerone, Diamond–metal interfaces in cutting tools: a review, Journal of Materials Science. 47 (2012) 3252-3264.

DOI: https://doi.org/10.1007/s10853-011-6164-6

[19] Y.Z. Hsieh, J.F. Chen, S.T. Lin, Pressureless sintering of metal-bonded diamond particle composite blocks, Journal of materials science. 35 (2000) 5383-5387.

[20] W. Tillmann, C. Kronholz, M. Ferreira, A. Knote, W. Theisen, P. Schütte, Comparison of Different Metal Matrix Systems for Diamond Tools Fabricated by New Current Induced Short-Time Sintering Processes, PM 2010 World Congr.-Diam. Tools. Manuscr. Ref. by Dr J.M. Sanches, CEIT, Spain, (2010).

[21] W.Z. Shao, V.V. Ivanov, L. Zhen, Y.S. Cui, Y. Wang, A study on graphitization of diamond in copper–diamond composite materials, Mater. Let. 58 (2004) 146–149.

DOI: https://doi.org/10.1016/s0167-577x(03)00433-6

[22] Y. Cui, S. B. Xu, L. Zhang, S. Guo, Microstructure and Thermal Properties of Diamond-Al Composite Fabricated by Pressureless Metal Infiltration, Advanced Materials Research, 150-151 (2011) 1110-1118.

DOI: https://doi.org/10.4028/www.scientific.net/amr.150-151.1110

[23] M. Uemura, An analysis of the catalysis of Fe, Ni or Co on the wear of diamonds, Tribology International. 37 (2004) 887-892.

DOI: https://doi.org/10.1016/j.triboint.2004.07.004

[24] W. Tillmann, M. Ferreira, A. Steffen, K. Rüster, J. Möller, S. Bieder, M. Paulus, M. Tolan, Carbon reactivity of binder metals in diamond-metal composites –characterization by scanning electron microscopy and X-ray diffraction, Diamond and Related Materials. 38 (2013) 118-123.

DOI: https://doi.org/10.1016/j.diamond.2013.07.002

[25] A. Molinari, F. Marchetti, S. Cialanella, Р. Scardi, A. Tiziani, Study of the diamond-matrix interface in hot-pressed cobalt-based tools, Materials Science and Engineering: A. 130 (1990) 257-262.

DOI: https://doi.org/10.1016/0921-5093(90)90066-c

[26] J.L. Lauer, Raman Spectra of Quasi-Elemental Carbon, in: I.R. Lewis, H.G.M. Edwards (Eds.), Handbook of Raman Spectroscopy, Marsel Dekker, New York, 2001, pp.863-917.

[27] Z.D. Lin, R.A. Queeney, Interface bonding in a diamond/metal matrix composite, in: Proceedings of the 1988 International Powder Metallurgy Conference, American Powder Metallurgy Inst., Orlando, 1997, pp.443-450.

[28] C.M. Sung, M.F. Tai, Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure, Intern. Jour. of Refractory Metals & Hard Materials. 15 (1997) 237-256.

DOI: https://doi.org/10.1016/s0263-4368(97)00003-6

[29] V.A. Mechnik, Production of Diamond−(Fe−Cu−Ni−Sn) composites with high wear resistance, Powder Metallurgy and Metal Ceramics. 52 (2014) 577-587.

DOI: https://doi.org/10.1007/s11106-014-9563-9

[30] M. Zain-ul-Abdein, H. Ijaz, W. Saleem, K. Raza, A. Salmeen Bin Mahfouz, T. Mabrouki, Finite Element Analysis of Interfacial Debonding in Copper/Diamond Composites for Thermal Management Applications, Materials. 10 (2017) 739-757.

DOI: https://doi.org/10.3390/ma10070739