Noncontact Control by Laser Conoscopy of Optical Homogeneity of Heavily Doped LiNbO3: Zn


Article Preview

A non-contact method using laser conoscope the studies of optical homogeneity of a series of heavily doped LiNbO3 crystals (4.46–4.69 mol. % ZnO). For all crystals not detected additional anomalies in сonoscopic patterns at increase of laser radiation power up to 90 mW, due to the presence of static and fluctuating defects induced in the photorefractive crystal by laser radiation.



Edited by:

Dr. Denis Solovev




O. Pikoul et al., "Noncontact Control by Laser Conoscopy of Optical Homogeneity of Heavily Doped LiNbO3: Zn", Materials Science Forum, Vol. 945, pp. 781-787, 2019

Online since:

February 2019




* - Corresponding Author

[1] Y.S. Kuz'minov, Electro-optical and nonlinear optical crystal of lithium niobate, Nauka, Moscow, 1987 (in Russian).

[2] N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum and Polaritons, Nauka, Moscow, 2003 (in Russian).

[3] T. Volk, M. Wohlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Springer, Berlin, (2008).

[4] S.C. Abrahams, J.M. Reddy, J.L. Bernstein, Ferroelectric lithium niobate single crystal X-ray diffraction study at 24°C, J. Phys. Chem. Sol. 27 6/7 (1966) 997-1012.3.

[5] A. Rauber, Chemistry and physics of lithium niobate, Current topic in materials science, ed. by E. Kaldis., Vol. 1. Amsterdam, (1978).

[6] S.C. Abrahams, Properties of lithium niobate, New York, (1989).

[7] M.N. Palatnikov, I.V. Biryukova, N.V. Sidorov, A.V. Denisov, V.T. Kalinnikov, P.G.R. Smith, V.Ya. Shur, Growth and concentration dependencies of rare-earth doped lithium niobate single crystals, J. Cryst. Growth, 291 (2) (2006) 390–397.


[8] M. Born, E. Wolf, Principles of Optics, Sixth ed., Pergamon, London, (1986).

[9] R. Stoiber, S. Morse, Microscopic identification of crystals, The Ronald Press Company New York, (1972).

[10] O.Yu. Pikoul, L.V. Alekseeva, I.V. Povh, V.I. Stroganov, K.A. Rudoy, E.V. Tolstov, V.V. Krishtop, Optical system features for observation of conoscope figures of large sizes, Journal of Instrument Engineering. 47 (2004) 53-55.

[11] O.Y. Pikoul, Determination of optical sign of a crystal by conoscopic method, J. Appl. Cryst. 43 (2010) 949-954.

[12] F.E. Veiras, G.Pérez, M.T. Garea, L.I. Perez, Characterization of uniaxial crystals through the study of fringepatterns, J. Phys.: Conf. Ser. 274 (2011) 012030.


[13] A.I. Kolesnikov, R.M. Grechishkin, S.A. Tretiakov, V.Ya. Molchanov, A.I. Ivanova, E.I. Kaplunova, E.Yu. Vorontsova, Laser con oscopy of large-sized optical crystals, IOP Conf. Series: Materials Science and Engineering. 49 (2013) 012037.


[14] A. Bajor, L. Salbut, A. Szwedowski, Imaging conoscope for investigation of optical inhomogeneity in large boules of uniaxial crystals, Review of scientific instruments. 69 (3) (1998) 1476-1487.


[15] F.E. Veiras, M.T. Garea, L.I. Perez, Wide angle conoscopic interference patterns in uniaxial crystals, Appl. Opt. 51 (2012) 3081-3090.


[16] P. Wang, Visualizing the conoscopic isochromatic interference fringes in anisotropic crystals by spinning polarizer and analyzer, Opt. Lett. 37 (2012) 4392-4394.


[17] L. Montalto, N. Paone, L. Scalise, D. Rinaldi, A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging, Review of scientific instruments. 86 (2015) 063102.


[18] M. Palatnikov, O. Pikoul, N. Sidorov, O. Makarova, K. Bormanis, Conoscopic studies of optical homogeneity of the LiNbO3:Mg crystals, Ferroelectrics. 436 (2012) 19-28.


[19] N.V. Sidorov, A.A. Kruk, O.Y. Pikoul, M.N. Palatnikov, N.A. Teplyakova, A.A. Yanichev, O.V. Makarova, Integrated research of structural and optical homogeneities of the lithium niobate crystal with low photorefractive effect, Optik. 126 (2015) 1081-1089.


[20] O.Y. Pikoul, N.V. Sidorov, N.A. Teplyakova, M.N. Palatnikov, The laser conoscopy of lithium niobate crystals of different composition, Proc. SPIE Aisa-Pacific Conference on Fundamental Problems of Opto- and Microelectronics, (2016) 101761R.


[21] A.G. Shtukenberg, Y.O. Punin, Optical anomalies in crystals, SPb.: Science, (2004).