On the Dislocation Contribution to the Dielectric Loss in the Materials with Piezoelectric Properties

Abstract:

Article Preview

A variable electric field is applied to a crystal. This field gives rise – through the piezoelectric coupling – to the variable mechanical stresses. Then the dislocations in the crystal will be driven by Peach-Koehler force and will start moving, dissipating the external field energy. Connection of the electric field energy dissipated per unit time with the internal friction is found. The case of resonant loss (Granato-Lucke model) is considered. The loss related to this mechanism to be at frequencies of megahertz range. The relaxation processes being responsible for the Bordoni and Hasiguti peaks also are considered. The use of obtained equations makes it possible to distinguish the dislocation contribution to both dielectric loss and dielectric dispersion and, therefore, to derive additional information about the crystal structure in a sufficiently simple way in terms of only one method.

Info:

Periodical:

Edited by:

Dr. Denis Solovev

Pages:

796-800

Citation:

V.N. Nechaev and V.V. Dezhin, "On the Dislocation Contribution to the Dielectric Loss in the Materials with Piezoelectric Properties", Materials Science Forum, Vol. 945, pp. 796-800, 2019

Online since:

February 2019

Export:

Price:

$41.00

[1] I.S. Zheludev, Foundation of Ferroelectricity, Atomizdat, Moscow, (1973).

[2] M.E. Lines, A.M. Glass, Principles and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford, (1977).

[3] L. Merten, Modell einer schraubenversetzung in piezoelektrischen kristallen I and II, Physik der Kondensiterten Materie. 2 (1964) 53-79.

DOI: https://doi.org/10.1007/bf02422352

[4] L. Merten, Piezoelektrische potentialfelder um stufenversetzungen belibiger richtung in piezoelektrischen kristallen mit elastischer isotropie, Z. Naturforsch. 19a (1964) 1161-1169.

DOI: https://doi.org/10.1515/zna-1964-1006

[5] A.M. Kosevich, L.A. Pastur, E.P. Feldman, Dislocation and linear charge fields in piezoelectric crystals, Sov. Phys. Crystallogr. 12 (1968) 797-801.

[6] G. Saada, Dislocations dans les cristaux piwzowlectriques, physica status solidi. 44 (1971) 717-731.

DOI: https://doi.org/10.1002/pssb.2220440231

[7] I.S. Smirnova, Electric fields around dislocations in crystals having the wurtzite structure, Sov. Phys. Solid State. 15 (1974) 1543-1546.

[8] D.M. Barnett, J. Lothe, Dislocations and line charges in anisotropic piezoelectric insulators, physica status solidi. (b). 67 (1975) 105-111.

DOI: https://doi.org/10.1002/pssb.2220670108

[9] A.R. Hutson, L.R. Walker, Piezoelectric potentials of dislocations in insulating crystals, J. Appl. Phys. 50 (1979) 6247-6250.

[10] I.S. Smirnova, Dislocations in AIIBVI and AIIIBV piezoelectric crystals, physica status solidi. (b). 126 (1984) 177-189.

DOI: https://doi.org/10.1002/pssb.2221260121

[11] S. Minagawa, Mechanical, electrical and thermal fields produced by moving dislocations and disclinations in thermopiezoelectric continua, physica status solidi. (b). 124 (1984) 565-571.

DOI: https://doi.org/10.1002/pssb.2221240215

[12] S. Minagawa, K. Shintani, Dislocation dynamics in anisotropic piezoelectric crystals, Phil. Mag. A. 51 (1985) 277-285.

[13] S. Minagawa, K. Shintani, Dislocation dynamics in anisotropic piezoelectric crystals. II. Additional examples, Phil. Mag. A. 56 (1987) 343-352.

DOI: https://doi.org/10.1080/01418618708214390

[14] S. Minagsawa, Energy and energy-factor or infinite straight charged-dislocations in an anisotropic piezoelectric crystal, Int. J. Eng. Sci. 30 (1992) 1459-1467.

DOI: https://doi.org/10.1016/0020-7225(92)90156-b

[15] S. K. Khannanov, Electroelastic fields of moving dislocations and disclinations in piezoelectric crystals, Phys. Solid State, 41 (1999) 1102-1104.

DOI: https://doi.org/10.1134/1.1130946

[16] J.P. Nowacki, V.I. Alshits, A. Radowicz, Green's functions for an infinite piezoelectric strip with line sources at the surfaces, Int. J. Appl. Electromagn. Mech. 12 (2000) 177-202.

[17] J.P. Nowacki, V.I. Alshits, A. Radowicz, Green's function for an infinite piezoelectric strip with a general line defect, J. Tech. Phys. 43 (2002) 133-153.

[18] J.P. Nowacki, V.I. Alshits, A. Radowicz, 2D electro-elastic fields in a piezoelectric layer-substrate structure, Int. J. Eng. Sci. 40 (2002) 2057-2076.

DOI: https://doi.org/10.1016/s0020-7225(02)00032-0

[19] E. S. Tsikhotskii, I. N. Zakharchenko and P. V. Dudkevich, Linear Defects and Ferroelectric Phase Transition in BaTiO3 Crystals, physica status solidi (a), 121 (391-398), (2006).

DOI: https://doi.org/10.1002/pssa.2211210205

[20] J.P. Nowacki, V.I. Alshits, Dislocation fields in piezoelectrics, in: F.R.N. Nabarro, J. Hirth (Eds.), Dislocations in Solids, vol. 13, Elsevier, North Holland, Amsterdam, 2007, pp.47-79.

DOI: https://doi.org/10.1016/s1572-4859(07)80004-0

[21] J.P. Nowacki, V.I. Alshits, Thermo-electro-elastic fields accompanying plastic deformation, Int. J. Eng. Sci. 45 (2007) 123–138.

DOI: https://doi.org/10.1016/j.ijengsci.2006.06.015

[22] V.I. Alshits, J.P. Nowacki, A. Radowicz, Interaction between non-parallel dislocations in piezoelectrics, Int. J. Eng. Sci. 47 (2009) 894–901.

DOI: https://doi.org/10.1016/j.ijengsci.2009.05.011

[23] J.P. Nowacki, A. Drabik, V.I. Alshits, Electroelastic fields of the general line source in periodically layered piezoelectric structure, Int. J. Appl. Electromagn. Mech. 52 (2016) 1305-1311.

DOI: https://doi.org/10.3233/jae-162079

[24] V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized susceptibility of dislocation in ferroelectrics, Ferroelectrics Letters. 10 (1989) 155-160.

DOI: https://doi.org/10.1080/07315178908200759

[25] V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized susceptibilily of dislocations in ferroelectrics and ferromagnetics, Z. für Kristallographie. 193 (1990) 175-197.

DOI: https://doi.org/10.1524/zkri.1990.193.3-4.175

[26] V.V. Dezhin, V.N. Nechaev, The distribution of the electric field around the vibrating edge dislocation in the ferroelectric crystal, J. Phys.: Conf. Ser. 738 (2016) 012111.

DOI: https://doi.org/10.1088/1742-6596/738/1/012111

[27] V.N. Nechaev, V.V. Dezhin, Bending vibrations equation of screw dislocation in ferroelectric, Basic Problems of Material Sciences. 14, N 1 (2017) 34-38.

[28] V.V. Dezhin, The linear response function of a screw dislocation in a ferroelectrics, J. Phys.: Conf. Ser. 936 (2017) 012096.

DOI: https://doi.org/10.1088/1742-6596/936/1/012096

[29] A. Granato, K. Lucke, Theory of Mechanical Damping Due to Dislocations, J. Appl. Phys. 27 (1956) 583-593.

[30] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, (1972).

[31] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8 (Course of Theoretical Physics), Pergamon Press, Oxford, (1984).

[32] I.L. Bataronov, V.V. Dezhin, Dynamic characteristics of dislocation and dislocation amplitude-independent internal friction, The Bulletin Voronezh State Tech. Univ. 2, N 8 (2006) 15-18.