[1]
M. Mohammadalipour, M. Masoomi, M. Ahmadi, S. Safi, Interfacial shear strength characterization of GMA-grafted UHMWPE fiber/epoxy/nano clay hybrid nanocomposite materials, Rsc Advances, 6 (2016) 41793-41799.
DOI: 10.1039/c6ra05027a
Google Scholar
[2]
L. Rong, X. Wang, J. Yu, W. Yan, Z. Jing, Z. Hu, Surface modification of UHMWPE/fabric composite membrane via self‐polymerized polydopamine followed by mPEG‐NH2 immobilization, Journal of Applied Polymer Science, 135 (2018) 46428.
DOI: 10.1002/app.46428
Google Scholar
[3]
N. Shahemi, S. Liza, A.A. Abbas, A.M. Merican, Long-term wear failure analysis of uhmwpe acetabular cup in total hip replacement, Journal of the Mechanical Behavior of Biomedical Materials, 87 (2018) 1-9.
DOI: 10.1016/j.jmbbm.2018.07.017
Google Scholar
[4]
A. Kumar, J. Bijwe, S. Sharma, Hard metal nitrides: Role in enhancing the abrasive wear resistance of UHMWPE, Wear, 378-379 (2017) 35-42.
DOI: 10.1016/j.wear.2017.02.010
Google Scholar
[5]
H. Wang, L. Xu, M. Zhang, R. Li, Z. Xing, J. Hu, M. Wang, G. Wu, More wear-resistant and ductile UHMWPE composite prepared by the addition of radiation crosslinked UHMWPE powder, Journal of Applied Polymer Science, 134 (2017) 44643.
DOI: 10.1002/app.44643
Google Scholar
[6]
S. Sharma, J. Bijwe, S. Panier, Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE, Composites Part B, 99 (2016) 312-320.
DOI: 10.1016/j.compositesb.2016.06.003
Google Scholar
[7]
A.B. Ali, A.S. Mohammed, N. Merah, Tribological investigations of UHMWPE nanocomposites reinforced with three different organo‐modified clays, Polymer Composites, (2016) 2224-2231.
DOI: 10.1002/pc.24186
Google Scholar
[8]
S. Sharma, J. Bijwe, S. Panier, M. Sharma, Abrasive wear performance of SiC-UHMWPE nano-composites – Influence of amount and size, Wear, 332 (2015) 863-871.
DOI: 10.1016/j.wear.2015.01.012
Google Scholar
[9]
L.I. Bei-Xing, W.S. Zhang, Chemical Reaction Between Polyvinyl Alcohol and Titanate Coupling Agent with X-Ray Photoelectron Spectroscopy, Journal of Wuhan University of Technology-Mater. Sci. Ed., 18 (2003) 71-74.
DOI: 10.1007/bf02838808
Google Scholar
[10]
M.A. Gülgün, O.O. Popoola, W.M. Kriven, X-ray photoelectron spectroscopy studies of bond structure between polyvinyl alcohol and a titanate cross-coupling agent, Journal of Materials Research, 10 (1995) 1565-1571.
DOI: 10.1557/jmr.1995.1565
Google Scholar
[11]
N. Wang, Z. Bai, Y. Qian, J. Yang, One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries, Acs Applied Materials & Interfaces, 9 (2017) 447−454.
DOI: 10.1021/acsami.6b13193
Google Scholar
[12]
A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, XPS and NMR studies of phosphoric acid activated carbons, Carbon, 46 (2008) 2113-2123.
DOI: 10.1016/j.carbon.2008.09.010
Google Scholar
[13]
W.F.S. J F Moulder, W Sobol, K D Bomben, Handbook of X-ray Photoelectron Spectroscopy, New York: Perkin- Elmer Press, (1995).
Google Scholar