Effects of the Covalent Bonding Entrapment of Tetrapyrrole Macrocycles Inside Translucent Monolithic ZrO2 Xerogels


Article Preview

While searching for adequate sol-gel methodologies for successfully trapping in monomeric and stable form either porphyrins or phthalocyanines, inside translucent monolithic silica xerogels, it was discovered that the interactions of these trapped tetrapyrrole macrocycles with Si-OH surface groups inhibit or spoil the efficient display of physicochemical, especially optical, properties of the confined species. Consequently, we have developed strategies to keep the inserted macrocycle species as far as possible from these interferences by substituting the surface -OH groups for alkyl or aryl groups or trapping these species inside alternative metal oxide networks, such as ZrO2, TiO2, and Al2O3. In the present manuscript, we present, for the first time to our knowledge, a methodology for preserving the spectroscopic characteristics of metal tetrasulfophthalocyanines and cobalt tetraphenylporphyrins trapped inside the pores of ZrO2 xerogels. The results obtained are contrasting with analogous silica systems and demonstrate that, in ZrO2 networks, the macrocyclic species remain trapped in stable and monomeric form while keeping their original spectroscopic characteristics in a better way than when captured inside silica systems. This outcome imply a lower hydrophilic character linked to the existence of a smaller amount of surface hydroxyl groups in ZrO2 networks, if compared to analogous SiO2 xerogel systems. The development and study of the possibility of trapping or fixing synthetic or natural tetrapyrrole macrocycles inside inorganic networks suggest the possibility of synthesizing hybrid solid systems suitable for important applications in technological areas such as optics, catalysis, sensoring and medicine



Nano Hybrids (Volume 7)

Main Theme:




E. Salas-Bañales et al., "Effects of the Covalent Bonding Entrapment of Tetrapyrrole Macrocycles Inside Translucent Monolithic ZrO2 Xerogels", Nano Hybrids, Vol. 7, pp. 1-34, 2014

Online since:

August 2014


* - Corresponding Author

[1] R.L. Milgrom, The Colour of Life; An Introduction to the Chemistry of Porphyrins and Related Compounds; Oxford University Press: Oxford, UK, (1997).

[2] K.M. Smith, Porphyrins and Metalloporphyrins; Elsevier Scientific Publishing Co: Amsterdam, The Netherlands, (1976).

[3] D. Dolphin, The Porphyrins, Physical Chemistry, Part A and B; Academic Press: New York, NY, USA, (1979).

[4] (a) J. Friedrich, H. Wolfrum, D. Haarer, Photochemical Holes: A Spectral Probe of the Amorphous State in the Optical Domain. J. Chem. Phys. 77 (1982).

DOI: https://doi.org/10.1002/chin.198247134

[5] Y. Liu, K. Shigehara, A. Yamada, Preparation of Bis(phthalocyaninato)lutetium with Various Substituents and Their Electrochemical Properties, Bull. Chem. Soc. Jpn. 65 (1992) 250-257.

DOI: https://doi.org/10.1246/bcsj.65.250

[6] J.R. Darwent, P. Douglas, A. Harriman, G. Porter, M. C. Richoux, Metal Phthalocyanines and Porphyrins as Photosensitizers for Reduction of water to Hydrogen, Coord. Chem. Rev. 44 (1982) 83-126.

DOI: https://doi.org/10.1016/s0010-8545(00)80518-4

[7] F. Bedioui, Zeolite-Encapsulated and clay-intercalated Metal Porphyrin, Phthalocyanine and Schiff-base Complexes as Models for Biomimetic Oxidation Catalysts: An Overview. Coord, Chem. Rev. 144 (1995) 39-68.

DOI: https://doi.org/10.1016/0010-8545(94)08000-h

[8] A.D.F. Dunbar, S. Brittle, T. H. Richardson, J. Hutchinson, C.A. Hunter, Detection of Volatile Organic Compounds Using Porphyrin Derivatives, J. Phys. Chem. B 114 (2010) 11697-11702.

DOI: https://doi.org/10.1021/jp102755h

[9] H. Zhang, Y. Sun, K. Ye, P. Zhang, Y. Wang, Oxygen Sensing Materials Based on Mesoporous Silica MCM-41 and Pt(II)-porphyrin Complexes, J. Mater. Chem. 15 (2005) 3181-3186.

DOI: https://doi.org/10.1039/b503336e

[10] E.D. Sternberg, D. Dolphin, C. Brickner, Porphyrin-based Photosensitizers for Use in Photodynamic Therapy, Tetrahedron 54 (1998) 4151-4202.

DOI: https://doi.org/10.1016/s0040-4020(98)00015-5

[11] J.P.A. Marijnissen, W.M. Star, Quantitative Light Dosimetry In Vitro and In Vivo, Lasers Med. Sci. 2 (1987) 235-242.

[12] E. Reddi, M. Ceccon, G. Valduga, G. Jori, J.C. Bommer, F. Elisei, L. Latterini, U. Mazzucato, Photophysical Properties and Antibacterial Activity of Meso-Substituted Cationic Porphyrins, Photochem. Photobiol. 75 (2002) 462-470.

DOI: https://doi.org/10.1562/0031-8655(2002)075<0462:ppaaao>2.0.co;2

[13] E. Weizman, C. H. Rothman, L. Greenbaum, A. Shainberg, M. Adamek, B. Ehrenberg, Z. Malik, Mitocondrial Localization and Photodamage During Photodynamic Therapy with Tetraphenylporphines, J. Photochem. Photobiol., B 59 (2000) 92-102.

DOI: https://doi.org/10.1016/s1011-1344(00)00143-3

[14] A. Lavi, H. Weitman, R. T. Holmes, K. M. Smith, B. Ehrenberg, The Depth of Porphyrin in a Membrane and the Membrane's Physical Properties Affect the Photosensitizing Efficiency, Biophys. J. 82 (2002) 2101-2110.

DOI: https://doi.org/10.1016/s0006-3495(02)75557-4

[15] C.C. Leznoff, A.B. P. Lever, Phtalocyanines Properties and Applications; VCH Publishers Inc: New York, NY, USA, 1989, Volume I; 1993, Volume II–III; 1996, Volume IV.

[16] I. Chatti, A. Ghorbel, P. Grange, J.M. Colin, Oxidation of Mercaptans in Light Oil Sweetening by Cobalt(II) Phthalocyanine–Hydrotalcite Catalysts, Catal. Today 75 (2002) 113-117.

DOI: https://doi.org/10.1016/s0920-5861(02)00051-2

[17] M. Calvete, G.Y. Yang, M. Hanack, Porphyrins and Phthalocyanines as Materials for Optical Limiting, Synth. Met. 141 (2004) 231-243.

DOI: https://doi.org/10.1016/s0379-6779(03)00407-7

[18] M.M. Nicholson, F.A. Pizzarello, Cathodic Electrochromic of Lutetium Diphthalocyanine Films, J. Electrochem. Soc. 128 (1981)1740-1743.

DOI: https://doi.org/10.1149/1.2127722

[19] J.D. Spikes, Phthalocyanines as Photosensitizers in Biological Systems and for the Photodynamic Therapy of Tumors, Photochem. Photobiol. 43 (1986) 691-699.

DOI: https://doi.org/10.1111/j.1751-1097.1986.tb05648.x

[20] J. Livage, Chimie Douce: From Shake-and-bake Processing to Wet Chemistry, New J. Chem. 25 ( 2001) 1.

DOI: https://doi.org/10.1039/b009233i

[21] C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, L. Nicole, Chimie douce,: A Land of Opportunities for the Designed Construction of Functional Inorganic and Hybrid Organic-inorganic Nanomaterials, C. R. Chim. 13 (2010).

DOI: https://doi.org/10.1016/j.crci.2009.06.001

[22] D. Levy, R. Reisfeld, D. Avnir, Fluorescence of Europium(III) Trapped in Silica Gel-glass as a Probe for Cation Binding and for Changes in Cage Symmetry During Gel Dehydration, Chem. Phys. Lett. 109 (1984) 593-597.

DOI: https://doi.org/10.1016/0009-2614(84)85431-7

[23] J. C. Pouxviel, B. Dunn, J.I. Zink, Fluorescence Study of Aluminosilicate Sols and Gels Doped with Hydroxy Trisulfonated Pyrene, J. Phys. Chem. 93 (1989) 2134-2139.

DOI: https://doi.org/10.1021/j100342a082

[24] N. Nassif, C. Roux, T. Coradin, M.N. Rager, O.M.M. Bouvet, J. Livage, A Sol-gel Matrix to Preserve the Viability of Encapsulated Bacteria, J. Mater. Chem. 13 (2003) 203-208.

DOI: https://doi.org/10.1039/b210167j

[25] M.A. García-Sánchez, A. Campero, Aggregation Properties of Metallic Tetrasulphophtalocyanines Encapsulated in Sol-Gel Materials, J. Sol-Gel Sci. Technol. 37 (1998) 651-655.

[26] M.A. García-Sánchez, A. Campero, Aggregation properties of metallic tetrasulfophthalocyanines embedded in sol-gel silica. Polyhedron 19 (2000) 2383-2386.

DOI: https://doi.org/10.1016/s0277-5387(00)00575-1

[27] B. González-Santiago, M.A. García-Sánchez, Macrocycle-Pore Network Interactions: Aluminum Tetrasulfophthalocyanine in Organically Modified Silica. J. Non-Cryst. Solids 357 (2011) 3168-3175.

DOI: https://doi.org/10.1016/j.jnoncrysol.2011.05.008

[28] M.A. García-Sánchez, S.R. Tello-Solís, R. Sosa-Fonseca, A. Campero, Fluorescent Porphyrins Trapped in Monolithic SiO2 gels, J. Sol-Gel Sci. Technol. 37 (2006) 93-97.

DOI: https://doi.org/10.1007/s10971-006-6425-z

[29] M.A. García-Sánchez, A. Campero, Insertion of Lanthanide Porphyrins in Silica Gel, J. Non-Cryst. Solids 296 (2001) 50-56.

DOI: https://doi.org/10.1016/s0022-3093(01)00888-2

[30] M.A. García-Sánchez, V. de la Luz, M.L. Estrada-Rico, M. M. Murillo-Martínez, M.I. Coahuila-Hernández, R. Sosa-Fonseca, S.R. Tello-Solís, F. Rojas, A. Campero, Fluorescent Porphyrins Covalently Bound to Silica Xerogel Matrices. J. Non-Cryst. Solids 355 (2009).

DOI: https://doi.org/10.1016/j.jnoncrysol.2008.10.007

[31] M.A. García-Sánchez, V. de la Luz, M.I. Coahuila-Hernández, F. Rojas-González, S.R. Tello-Solís, A. Campero, Effects of the Structure of Entrapped Substituted Porphyrins on the Textural Characteristics of Silica Network. J. Photochem. Photobiol., A 223 (2011).

DOI: https://doi.org/10.1016/j.jphotochem.2011.08.015

[32] R.I.Y. Quiroz-Segoviano, M.A. Garcia-Sánchez, F. Rojas-González, Cobalt Porphyrin Covalently Bonded to Organo Modified Silica Xerogels. J. Non-Cryst. Solids 358 (2012) 2868-2876.

DOI: https://doi.org/10.1016/j.jnoncrysol.2012.07.018

[33] I.N. Serratos, F. Rojas-González, R. Sosa-Fonseca, J.M. Esparza-Schulz, V. Campos-Peña, S.R. Tello-Solís, M.A. García Sánchez, Fluorescente Optimization of Chlorophyll Covalently Bonded to Mesoporous silica synthesized by the sol-gel, Method, J. Photochem. Photobiol., A 272 (2013).

DOI: https://doi.org/10.1016/j.jphotochem.2013.08.014

[34] E. Sánchez González, Efecto de los recubrimientos sol-gel de zirconia sobre la fractura de materiales frágiles, Anales de mecánica de la fractura, Editorial, Garrido S. L vol. 22, 242-247. España (2005).

DOI: https://doi.org/10.4995/thesis/10251/8506

[35] J. H. Weber, D.H. Buch, Complexes Derived from Strong Field Ligands. XIX. Magnetic Properties of Transition Metal Derivatives of 4, 4', 4", 4', -Tetrasulfophthalocyanine. Inorg. Chem. 4 (1965) 469-471.

DOI: https://doi.org/10.1021/ic50026a007

[36] P. Rothemund, Porphyrin Studies. III. The Structure of the Porphine Ring System. J. Am. Chem. Soc. 61 (1939) 2912-2915.

[37] (a) A. D. Adler, F.R. Logo, F. Kampas, J. Kim, On the preparation of metalloporphyrins, J. Inorg. Nucl. Chem. 32 (1970).

[38] (a) K.S.W. Sing, D.H. Everett, R.A.W. Haul, Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 57 (1985).

DOI: https://doi.org/10.1515/iupac.57.0013

[39] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today 41 (1998) 207-219.

DOI: https://doi.org/10.1016/s0920-5861(98)00050-9

[40] J. Guzmán-López, Efecto del método de preparación en las propiedades de los óxidos mixtos Zr-Ti, Rev. Mex. Ing. Chim. (2000) 29-36.

[41] H. Zou, Y. S. Lin, Structural and surface chemical properties of sol–gel derived TiO2–ZrO2 oxides, Appl. Catal. A: Gen. 265 (2004) 35-42.

DOI: https://doi.org/10.1016/j.apcata.2004.01.015

[42] G. I. Spijksma, G. A. Seisenbaeva, S. Hakansson, D.H.A. Blank, H. J. M. Bouwmeester, V. G. Kessler, New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: A possibility to approach new classes of materials, J. Sol-Gel Sci. Technol. 40 (2006).

DOI: https://doi.org/10.1007/s10971-006-9209-6

[43] C. Velásquez, M. L. Ojeda, A. Campero, J. M. Esparza, F. Rojas, Surfactantless synthesis and textural properties of self-assembled mesoporous SnO2. Nanotechnology 17 (2006) 3347-3358.

DOI: https://doi.org/10.1088/0957-4484/17/14/003

[44] R.I.Y. Quiroz-Segoviano, I.N. Serratos, F. Rojas-González, S.R. Tello-Solís, R. Sosa-Fonseca, O. Medina-Juárez, E. Menchaca-Campos, M.A. García-Sánchez, On Tuning the Fluorescence Emission of Porphyrin Free Bases Bonded to the Pore Walls of Organo-Modified Silica, Molecules 19 (2014).

DOI: https://doi.org/10.3390/molecules19022261