Electrochemical Synthesis and Photocatalytic Activity of Differently Shaped CuOx Particles

Abstract:

Article Preview

CuOx powders with diff erently shaped particles were firstly prepared via an electrochemical method by oxidation and dispersion of copper electrodes in an electrolyte solution under pulse alternating current (PAC). By means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) the current density is found to have an influence on the morphology and composition of CuOx particles. Photocatalytic efficiency of CuOx towards methyl orange (MO) degradation under visible light was investigated. The prepared polyhedral particles show the best photocatalytic activity of 81 % towards MO comparing to octahedral and spherical particles with 70 and 61 %, respectively.

Info:

Periodical:

Edited by:

Alexander Gusev, Tatiana Dyatcheck and Anna Godymchuk

Pages:

330-333

Citation:

A. Ulyankina et al., "Electrochemical Synthesis and Photocatalytic Activity of Differently Shaped CuOx Particles", Nano Hybrids and Composites, Vol. 13, pp. 330-333, 2017

Online since:

January 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] K. Simeonidis, S. Mourdikoudis, E. Kaprara, M. Mitrakas, L. Polavarapu, Inorganic engineered nanoparticles in drinking water treatment: a critical review, Env. Sci.: Water Res. Tech. 2 (2016) 43-70.

DOI: https://doi.org/10.1039/c5ew00152h

[2] R. Li, L. Zhang, P. Wang, Rational design of nanomaterials for water treatment, Nanoscale. 7 (2015) 17167-17194.

[3] D. Bahnemann, Photocatalytic water treatment: solar energy applications, Sol. Energy. 77 (2004) 445-459.

DOI: https://doi.org/10.1016/j.solener.2004.03.031

[4] S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, J. Sun, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review, RSC Adv. 5 (2015) 14610-14630.

DOI: https://doi.org/10.1039/c4ra13734e

[5] K. Chen, S. Song, D. Xue, Chemical reaction controlled synthesis of Cu2O hollow octahedra and core-shell structures, CrystEngComm. 15 (2013) 10028-10033.

DOI: https://doi.org/10.1039/c3ce41745j

[6] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog. Mater Sci. 60 (2014) 208-337.

DOI: https://doi.org/10.1016/j.pmatsci.2013.09.003

[7] X. -L. Luo, M. -J. Wang, D. -S. Yang, J. Yang, Y. -S. Chen, Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate, J. Ind. Eng. Chem. 32 (2015) 313-318.

[8] D. Jiang, C. Xing, X. Liang, L. Shao, M. Chen, Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities, J. Colloid Interface Sci. 461 (2016).

DOI: https://doi.org/10.1016/j.jcis.2015.09.034

[9] W. -C. Huang, L. -M. Lyu, Y. -C. Yang, M.H. Huang, Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, J. Am. Chem. Soc. 134 (2012) 1261-1267.

DOI: https://doi.org/10.1021/ja209662v

[10] H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles, Mater. Res. Bull. 41 (2006) 1310-1318.

DOI: https://doi.org/10.1016/j.materresbull.2006.01.004

[11] P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Photoelectrochemistry of Electrodeposited Cu2O, J. Electrochem. Soc. 147 (2000) 486-489.

[12] A.B. Kuriganova, C.A. Vlaic, S. Ivanov, D.V. Leontyeva, A. Bund, N.V. Smirnova, Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries, J. Appl. Electrochem. 46 (2016) 527-538.

DOI: https://doi.org/10.1007/s10800-016-0936-2

[13] A. Kuriganova, A. Alexandrin, N. Smirnova, Electrochemical Dispersion Method for TiO2 Nanoparticles Preparation, Key Eng. Mater. 683 (2016) 419-423.

DOI: https://doi.org/10.4028/www.scientific.net/kem.683.419

[14] D.E. Doronkin, A.B. Kuriganova, I.N. Leontyev, S. Baier, H. Lichtenberg, N.V. Smirnova, J. -D. Grunwaldt, Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts, Catal. Lett. 146 (2016) 452-463.

DOI: https://doi.org/10.1007/s10562-015-1651-z

[15] H. Yu, J. Yu, S. Liu, S. Mann, Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres, Chem. Mater. 19 (2007) 4327-4334.

DOI: https://doi.org/10.1021/cm070386d

[16] D. -H. Tseng, L. -C. Juang, H. -H. Huang, Effect of Oxygen and Hydrogen Peroxide on the Photocatalytic Degradation of Monochlorobenzene in TiO2 Aqueous Suspension, Int. J. Photoenergy. 2012 (2012) 9.

DOI: https://doi.org/10.1155/2012/328526

[17] Y. Zhang, B. Deng, T. Zhang, D. Gao, A. -W. Xu, Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity, J. Phys. Chem. C. 114 (2010) 5073-5079.

DOI: https://doi.org/10.1021/jp9110037

Fetching data from Crossref.
This may take some time to load.