Native Oxide Growth on Silicon Micro-Pillars


Article Preview

This paper presents a study on monitoring the native oxide growth on silicon micro-pillars. It also presents a comparison between the rates of oxide growth on pillars fabricated using the reactive ion etching (RIE) approach and the metal assisted chemical etching (MACE) approach. The native oxide growth is monitored using photoluminescence (PL) measurements. PL measurements showed that native silicon oxide grows at a higher rate on MACE pillars compared to RIE pillars. SEM images showed that the MACE pillars exhibit a porous outer layer while the RIE pillars show a dense outer layer. It is concluded that the porosity of the pillars enhances the native oxide growth.






A. Kabalan "Native Oxide Growth on Silicon Micro-Pillars", Nano Hybrids and Composites, Vol. 15, pp. 1-9, 2017

Online since:

May 2017





* - Corresponding Author

[1] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, Growth of native oxide on a silicon surface, Journal of Applied Physics 68, 1272 (1990).


[2] R. Takizawa, T. Nakanishi, and A. Ohsawa, Degradation of metal-oxide-semiconductor devices caused by iron impurities on the silicon water surface, Journal of Applied Physics 62, 4933 (1987).


[3] A. S. Maeda and M. Ogino, in Extended Abstracts of the 169th Electrochemical Society Meeting, Boston, 1986, p.372.

[4] R. Katz, High Performance VLSI Processor Architecture, in Digest, Technical Papers, 1989 VLSI Symposium, Kyoto, 1989, p.5.

[5] Matsushita, in Proceedings of the 1st Workshop on ULSI Ultra Clean Technology, Tokyo, 1989, p.1.

[6] T. Shirnono and M. Tsuji, in Proceedings of the 1st Workshop on ULSI Ultra Clean Technology, Tokyo, 1989, p.49.

[7] D. Brown and P. Kennicott , Glass Source B diffusion in Si and SiO2, , J. Electrochem. Soc. 118 293 (1971).

[8] R. Ghoshtagore, Phosphorus Diffusion Processes in SiO2 Films, Thin Solid Films 25 501 (1975).


[9] M. Morita, Native Oxide Films and Chemical Oxide Films, Ultraclean Surface Processing of Silicon Wafers, , T. Hattori Ed., Springer, New York, p.543 (1998).


[10] K. Yamada, M. Morita, C.M. Soh, H. Suzuki, and T. Ohmi, Low-Temperature Silicon Epitaxy Using Gas Molecular-Flow Preshowering, Journal of Electrochemical Society, 140 (2), 371 (1993).


[11] S. I. Raider, R. Flitsch, and M. J. Palmer, Oxide Growth on Etched Silicon in Air at Room Temperature, Journal of Electrochemical Society 122, 413 (1975).


[12] T. Hattori, K. Takase, H. Yamagishi, R. Sugino, Y. Nara and T. Ito, Chemical Structures of Native Oxides Formed during Wet Chemical Treatments, Japanese Journal of Applied Physics, 29(1989) L296.


[13] M. Morita, T. Ohmi, Characterization and Control of Native Oxide on Silicon, J. Appl. Phys. 33 (1994) pp.370-374.

[14] S. I. Raider, R. Flitsh, M. J. Palmer, Oxide Growth on Etched Silicon in Air at Room Temperature, Journal of Electrochemical Society 122, 3(1975).


[15] K. Saga, H. Kuniyasu, T. Hattori, Influence of Ambient Oxygen and Moisture on the Growth of Native Oxides on Silicon Surfaces, 204th Meeting of The Electrochemical Society, April (2012).

[16] T. Ohmi, M. Morita, E. Hasegawa, M. Kawakami, and K. Suma, Surface Reaction Film Formation by Si2H6 Transfer at Molecular Flow, in Extended Abstracts of the 175th Electrochemical Society Meeting, Los Angeles, 1989, p.227.

[17] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and K. Suma, Control factor of native oxide growth on silicon in air or in ultrapure water, Applied Physics Letters, 55, 562 (1989).


[18] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, vol. 449, p.885–889, (2007).


[19] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature, vol. 451, p.163–167, (2008).


[20] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nano., vol. 3, p.31–35, (2008).


[21] M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nature Mater., vol. 9, p.239–244, (2010).


[22] E. Garnett and P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett., vol. 10, p.1082–1087, (2010).


[23] B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., vol. 97, p.114302–114312, (2005).


[24] H. Levison, W. Arnold, Handbook of Microlithography, Micromachinging, and Microfabrication, SPIE Press, 1997 pp.463-465.

[25] S.A. Syed Asif, K.J. Wahl and R.J. Colton, The influence of oxide and adsobates on the nanomechanical response of silicon surfaces, Journal of Materials Research, vol. 15, pp.546-553, (2000).

[26] T. Unagami, Formation Mechanism of Porous Silicon Layer by Anodization in  HF  Solution, J. Electrochem. Soc. 1980 , 127 , p.476.


[27] Z. Hunag, N. Geyer, U. Gosele, Metal-Assisted Chemical Etching of Silicon: A Review, Adv. Mater. 2011, 23, pp.285-308.


[28] J.W. Coburn, Plasma Etching and Reactive Ion Etching, American Vacuum Society, Monograph Series (1982).

[29] G. Oehrlein, Reactive Ion Etching, Physics Today, vol. 39, p.26 (1986).

Fetching data from Crossref.
This may take some time to load.