Effect of Graphene Nanoplatelets Fillers on Mechanical Properties and Microstructure of Cast Aluminum Matrix Composites


Article Preview

Recently, many studies on the production of graphite/graphene reinforced aluminum-matrix composites using different fabrication methods, such as powder or semi-powder method, have been performed. However, cast aluminum/graphite or aluminum/graphene composites have not been widely investigated and the research on this production method mainly focuses on 3D graphite particle reinforcements. In this study, the use of a 2D graphene structure, i.e. graphene nanoplatelets (GNPs), in the production of cast Al/GNP composites is investigated. Graphene nanoplatelets reinforced cast aluminum matrix composites were produced using aluminum alloy as matrix material and different graphene nanoplatelets contents. Specimens were cast into a heated rectangular steel mold, the temperature of which was 100°C. All specimens underwent tensile and bending tests as well as hardness measurements and microstructural investigation. Ultimate Tensile Strength (UTS) was considerably increased, simultaneously with a slight decrease of elongation at break, in the case of 0.1 wt% graphene nanoplatelets addition. Regarding bending performance, a slight increase was observed as well. The flexural behavior for 0.1 wt% graphene nanoplatelets addition was exactly the same with the matrix material. The graphene nanoplatelets content found to affect both the surface and the chemical composition of the interdendritic region. After 0.1 wt%, further increase of the wt% graphene nanoplatelets content lead to formation of aluminum carbides (Al4C3) at the grain boundaries, with a consequent drop on the mechanical performance of the Al/GNPs composite.






G. V. Seretis et al., "Effect of Graphene Nanoplatelets Fillers on Mechanical Properties and Microstructure of Cast Aluminum Matrix Composites", Nano Hybrids and Composites, Vol. 15, pp. 26-35, 2017

Online since:

May 2017




* - Corresponding Author

[1] W.R. Osorio, D.J. Moutinho, L.C. Peixoto, I.L. Ferreira, A. Garcia, Macrosegregation and microstructure dendritic array affecting the electrochemical behavior of ternary Al-Cu-Si alloys, Electrochim. Acta 56 (2011) 8412-8421.

DOI: https://doi.org/10.1016/j.electacta.2011.07.028

[2] W.R. Osorio, J.E. Spinelli, C.M.A. Freire, M.B. Cardona, A. Garcia, The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al–Cu alloys immersed in H2SO4, J. Alloys Comp. 443 (2007) 87-93.

DOI: https://doi.org/10.1016/j.jallcom.2006.10.010

[3] G. García-García, J. Espinoza-Cuadra, H. Mancha-Molinar, Copper content and cooling rate effects over second phase particles behavior in industrial aluminum–silicon alloy 319, Mater. Des. 28 (2007) 428-433.

DOI: https://doi.org/10.1016/j.matdes.2005.09.021

[4] R. Perez-Bustamante, D. Bolanos-Morales, J. Bonilla-Martinez, I. Estrada-Guel, R. Martinez-Sanchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying, J. Alloys Comp. 615 (2014).

DOI: https://doi.org/10.1016/j.jallcom.2014.01.225

[5] J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A 626 (2015).

DOI: https://doi.org/10.1016/j.msea.2014.12.102

[6] Y. Wu, G. -Y. Kim, A.M. Russell, Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing, Mater. Sci. Eng. A 538 (2012) 164-172.

DOI: https://doi.org/10.1016/j.msea.2012.01.025

[7] S. Salimi, H. Izadi, A.P. Gerlich, Fabrication of an aluminum–carbon nanotube metal matrix composite by accumulative roll-bonding, J. Mater. Sci. 46 (2011) 409-415.

DOI: https://doi.org/10.1007/s10853-010-4855-z

[8] K. Hansang, L. Marc, Hot extruded carbon nanotube reinforced aluminum matrix composite materials, Nanotechnology 23 (2012) 415701.

DOI: https://doi.org/10.1088/0957-4484/23/41/415701

[9] Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites, Compos. Part A: Appl. Sci. Manuf. 43 (2012) 2161–2168.

DOI: https://doi.org/10.1016/j.compositesa.2012.07.026

[10] W.J. Kim, S.H. Lee, High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength, Compos. Part A: Appl. Sci. Manuf. 67 (2014) 308–315.

DOI: https://doi.org/10.1016/j.compositesa.2014.09.008

[11] T. Laha, Y. Chen, D. Lahiri, A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Compos. Part A: Appl. Sci. Manuf. 40 (2009) 589–594.

DOI: https://doi.org/10.1016/j.compositesa.2009.02.007

[12] S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene-aluminum nanocomposites, Mater. Sci. Eng. A 528 (2011) 7933-7937.

DOI: https://doi.org/10.1016/j.msea.2011.07.043

[13] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Mater. 66 (2012) 594-597.

[14] S.E. Shin, D.H. Bae, Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene, Compos. Part A: Appl. Sci. Manuf. 78 (2015) 42–47.

[15] A. Fadavi Boostani, S. Tahamtan, Z.Y. Jiang, D. Wei, S. Yazdani, R. Azari Khosroshahi, R. Taherzadeh Mousavian, J. Xub, X. Zhang, D. Gong, Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles, Compos. Part A: Appl. Sci. Manuf. 68 (2015).

DOI: https://doi.org/10.1016/j.compositesa.2014.10.010

[16] S. Park, R. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4 (2009) 217-224.

[17] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.

[18] C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.

DOI: https://doi.org/10.1126/science.1157996

[19] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(2008) 902-907.

DOI: https://doi.org/10.1021/nl0731872

[20] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.

DOI: https://doi.org/10.1016/j.ssc.2008.02.024

[21] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: https://doi.org/10.1002/adma.201001068

[22] C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Mater. Sci. Eng. A 304-306 (2001) 151-158.

[23] M. Rashad, F. Pan, A. Tang, M. Asif, Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Progress in Natural Science: Materials International 24 (2014) 101–108.

DOI: https://doi.org/10.1016/j.pnsc.2014.03.012

[24] C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, A. Garcia, Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy, J. Alloys Comp. 673 (2016) 220-230.

DOI: https://doi.org/10.1016/j.jallcom.2016.02.161

[25] L. Ci, Z. Ryu, N.Y. Jin-Phillipp, M. Ruhle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater. 54 (2006) 5367–5375.

DOI: https://doi.org/10.1016/j.actamat.2006.06.031

[26] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon 47 (2009) 570–577.

DOI: https://doi.org/10.1016/j.carbon.2008.10.041

[27] C.F. Deng, X.X. Zhang, D.Z. Wang, Y.X. Ma, Calorimetric study of carbon nanotubes and aluminum, Mater. Lett. 61 (2007) 3221–3223.

[28] H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Investigation of carbon nanotube reinforced aluminum matrix composite materials, Compos. Sci. Technol. 70 (2010) 546–550.

DOI: https://doi.org/10.1016/j.compscitech.2009.11.025

[29] C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Mater. Sci. Eng. A 444 (2007) 138–145.

Fetching data from Crossref.
This may take some time to load.