Cobalt Contamination in Silicon


Article Preview

The properties of cobalt as a contaminant in p-type silicon are studied by using cobaltimplanted wafers annealed by RTP or by RTP plus a low temperature furnace annealing. It is shown that after RTP most cobalt is under the form of CoB pairs. A quantification of cobalt contamination is provided based upon SPV measurements and optical pair dissociation. However, this quantification fails in furnace-annealed wafers because of the formation of a different level. It is shown that the CoB level is located near the band edges, whereas the level formed upon a low temperature furnace annealing is located near midgap. Besides, when the cobalt concentration is high enough a small fraction of cobalt is in a level different from the CoB pair even in RTP samples. This level can probably be identified with a previously observed midgap level. It is suggested that the same level is formed in RTP plus low temperature furnace annealed samples and in high concentration RTP annealed samples, and that this level may consist in some cobalt agglomerate.



Solid State Phenomena (Volumes 108-109)

Edited by:

B. Pichaud, A. Claverie, D. Alquier, H. Richter and M. Kittler






M. L. Polignano et al., "Cobalt Contamination in Silicon ", Solid State Phenomena, Vols. 108-109, pp. 571-576, 2005

Online since:

December 2005




In order to see related information, you need to Login.

In order to see related information, you need to Login.