Hybrid Experimental – Numerical Full-Field Displacement Evaluation for Characterization of Micro-Scale Components of Mechatronic Systems


Article Preview

Hybrid experimental – numerical techniques are applied to the problem of the interpretation of patterns of fringes that are generated by non-contact full-field experimental methods applied for analysis of dynamic displacement fields of MEMS components. It is shown that even rather simple cantilever beam of a MEMS switch can exhibit complex dynamical response due to the nonlinearities of interactions and the surrounding noise. In many instances the interpretation of experimental results is possible only after numerical simulation of MEMS components in virtual computational environments.



Solid State Phenomena (Volume 113)

Edited by:

Nin Bizys, Andrejus Henrikas Marcinkevicius




V. Ostaševičius et al., "Hybrid Experimental – Numerical Full-Field Displacement Evaluation for Characterization of Micro-Scale Components of Mechatronic Systems", Solid State Phenomena, Vol. 113, pp. 73-78, 2006

Online since:

June 2006




[1] H. R. Last, F. R. Frank and E. J. Pryputniewicz: Microelectromechanical Systems (mechatronics) in Military Systems: Lessons Learned and Remaining Technical Challenges (Proceedings of the 4 th International Symposium on MEMA and Nanotechnology 2003), pp.28-34.

[2] R. H. Grace: Commercialization issues of MEMS/MST/Micro-machines, an updated industry report card on the barriers to commercialization (Proc. Sensors Expo & Conference 2002), p.339344.

[3] A. Bosseboeuf and S. Petitgrand: Characterization of the static and dynamic behavior of M(O)EMS by optical techniques: status and trends (Journal of Micromechanics and Microengineering, No. 13, 2003), pp.23-33.

[4] Z. J. Yao, S. Chen, S. Eshelman, D. Denniston and C. Goldsmith: Micromachined low-loss microwave switches (J. Microelectromech. Syst., Vol. 8, 1999), pp.129-134.

DOI: https://doi.org/10.1109/84.767108

[5] D. Peroulis, S. P. Pacheco, K. Sarabandi and L. P. B. Katehi: Electromechanical considerations in developing low-voltage RF MEMS switches (IEEE Trans. Microwave Theory Tech., Vol. 51, 2003), pp.259-270.

DOI: https://doi.org/10.1109/tmtt.2002.806514

[6] A. S. Kobayashi, editor: Handbook on Experimental Mechanics - 2nd Ed (Society for Experimental Mechanics, USA 1993).

[7] V. Ostasevicius, S. Tamulevicius, A. Palevicius, M. Ragulskis, R. Palevicius and V. Grigaliunas: Hybrid numerical - experimental approach for investigation of dynamics of micro cantilever relay system (Optics and Lasers in Engineering, Vol. 43-1, 2005), pp.63-73.

DOI: https://doi.org/10.1016/j.optlaseng.2004.06.005

[8] V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis and. R. Palevicius: Holographic imaging technique for characterization of mechatronic switch dynamics (Proceedings SPIE, Vol. 5389, 2004), pp.73-84.

DOI: https://doi.org/10.1117/12.540183

[9] M. Ragulskis, A. Palevicius and L. Ragulskis: Plotting Holographic Interferograms for Visualization of Dynamic Results from Finite-Element Calculations (International Journal for Numerical Methods in Engineering, Vol. 56, 2003), pp.1647-1659.

DOI: https://doi.org/10.1002/nme.632

[10] Y. J. Yang, M. A. Gretillat and S. D. Senturia: Effects of air damping on the dynamics of nonuniform deformation of microstructures (Proc. Transducers'97, 1997), pp.1093-1096.

Fetching data from Crossref.
This may take some time to load.