Heat Treatment Behavior of Tungsten Heavy Alloy

Abstract:

Article Preview

This paper focuses on the variations of static and dynamic properties of tungsten heavy alloy with heat treatment. The matrix phase of 93W-4.9Ni-2.1Fe (weight percent) has been penetrated into W/W grain boundaries during a cyclic heat treatment which consists of repeated isothermal holdings at 1150 °C and water quenching between them. By applying the cyclic heat treatment, the impact energy of tungsten heavy alloy is increased about three times from 57 to 170 J. When the tungsten heavy alloy is cyclically heat treated at 1150 °C and then re-sintered at 1485 °C, W/matrix interface is changed from round to undulated shape. The irregularity of the interface is increased with increasing the number of heat treatment cycles. From the measurement of the residual stress of W grains by X-ray diffraction, it is found that the irregularity of the interface is closely related with strain energy stemmed from the difference of thermal expansion coefficient between W particles and matrix phase. From dynamic ballistic test, it is found that the tungsten heavy alloy with undulated W grains forms many narrow fracture bands which are preferential for the self sharpening effect, thus, for the improvement of the penetration performance.

Info:

Periodical:

Solid State Phenomena (Volume 118)

Edited by:

Jang Hyun Sung, Chan Gyu Lee, Yong Zoo You, Young Kook Lee and Jae Young Kim

Pages:

35-40

DOI:

10.4028/www.scientific.net/SSP.118.35

Citation:

W. H. Baek et al., "Heat Treatment Behavior of Tungsten Heavy Alloy ", Solid State Phenomena, Vol. 118, pp. 35-40, 2006

Online since:

December 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.