Modeling and Experimental Verification of Plastic Behavior of the Martensitic Transformation Plastic Behavior in a Carbon Steel

Abstract:

Article Preview

The objective of this paper is to extend the capability of analyzing the time dependence and coupling of temperature, stress and strain effects on the macroscopic and microscopic structures subjected to quenching, and to introduce a theory of the kinetic of the phase transformation. Strain due to phase transformation, transformation plasticity and thermal expansion are the dominant factors that need to be included in the simulation of a quenching process. The evolution of the microstructure also influences the constitutive equations. In particular, as the temperature changes from the high to phase transformation, temperature and then room temperature, the stress-strain relationship changes from elastic-plastic strain. Therefore, in order to obtain a high strength and ductility in carbon steels, transformation plasticity often has a major effect in increasing of the residual stress during quenching process. In this paper, we measured temperature change and distortion occurring during the quenching process of a carbon steel(SCr420) by thermal simulation machine (Gleeble 1500) are used to determine the parameter of transformation plasticity due to the generation of martensite. The modeling of martensitic transformation plasticity is also verified by using of computational simulation of the quenching process.

Info:

Periodical:

Solid State Phenomena (Volume 118)

Edited by:

Jang Hyun Sung, Chan Gyu Lee, Yong Zoo You, Young Kook Lee and Jae Young Kim

Pages:

369-374

DOI:

10.4028/www.scientific.net/SSP.118.369

Citation:

D. Y. Ju et al., "Modeling and Experimental Verification of Plastic Behavior of the Martensitic Transformation Plastic Behavior in a Carbon Steel", Solid State Phenomena, Vol. 118, pp. 369-374, 2006

Online since:

December 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.