Synthesis of CdS Nanocrystallites in Polymer Matrix: Sui-Generis Approach


Article Preview

We offer sui-generis strategy for synthesis of nanosized chalcogenide semiconductors in polymer matrix by a novel polymer-inorganic solid-state reaction. In our previous report, the rationale of this strategy has been successfully established by the solid-state reaction between CdI2 and an intentionally chosen engineering thermoplastic, namely, polyphenylene sulphide (PPS). In the pursuit of this work, we explored the possibility of using other cadmium salts viz cadmium nitrate, cadmium chloride and cadmium acetate in place of cadmium iodide for the envisaged solidstate reaction with PPS. All the reactions were carried out at the melting temperature of PPS (285oC) in 1:1 and 10:1 molar ratios of polymer to cadmium salt. The resultant products were characterised by XRD, TEM-SAED and DRS. It is observed that only cadmium nitrate yielded CdS nanocrystallites (average size of 15nm) entrapped in modified polymer matrix in a competing behaviour with cadmium iodide when reacted in 10:1 molar ratio while (i) cadmium acetate leads to the formation of only cadmium oxide and (ii) cadmium chloride exhibits grossly incomplete solid state reaction yielding understated quantity of CdS when reacted with PPS.



Solid State Phenomena (Volume 119)

Edited by:

Chang Kyu Rhee




K.G. Kanade et al., "Synthesis of CdS Nanocrystallites in Polymer Matrix: Sui-Generis Approach", Solid State Phenomena, Vol. 119, pp. 21-26, 2007

Online since:

January 2007




[1] Y. Wang, N. Herron: J. Phys. Chem. Vol 95(1991), p.525.

[2] K. J. Bandaranayake, G. W. Wen, J. Y. Lin, H. X. Jing, C. M. Sorensen: Appl. Phys Lett. Vol. 67(1995), p.831.

[3] R. B. Borade: Zeolites Vol. 7(1987), p.398.

[4] R Williams, P. N. Yocom, F. S. Stofko: J. Colloid. Interface Sci. Vol. 106 (1985), p.388.

[5] A. H. Thompson: Mater. Res. Bull. Vol. 10(1975), p.915.

[6] S. H. Yu, J. Yang, Z. H. Han, Y. Zhaou, R. Y. Yang, Y. T. Qian, Y. Zhang: J. Mater. Chem. Vol. 9(1999), p.1283.

[7] A.C. Jones: Chem. Soc. Rev (1997), p.101.

[8] G. Henshaw, P. Parkin, G. Shaw: Chem. Comm. (1996), p.1095.

[9] G. Henshaw, P. Parkin, G. Shaw: J. Mater. Sci. Lett Vol. 15 (1996), p.174.

[10] M. Lazell, P. O'Brien: J. Mater. Chem. Vol. 9 (1999), p.1381.

[11] L. Spanhel, M. Haase, H. Weller, A. Henglein: J. Am. Chem. Soc. Vol. 109(1987), p.5649.

[12] T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Propovic, K. Diesner, A. Chemseddine, A. Eychmuller, H. Weller: J. Phys. Chem. Vol. 98 (1994), p.7665.

[13] J. Rockenberger, L. Troger, A. Kornowski, T. Vossmeyer, A. Eychmuller, J. Feldhaus, H. Weller: J. Phys Chem. B Vol. 101(1997), p.2691.


[14] K. Sookal, L. H. Hanus, H. J. Ploehn, C. J. Murphy: Adv. Mater. Vol. 10(1998), p.1083.

[15] G. Carrot, S. M. Scholz, C. J. G. Plummer, J. G. Hilborn, J. L. Hedrick: Chem. Mater. Vol. 11(1999), p.3571.

[16] J Huang, K. Sookal, C. J. Murphy, H.J. Ploehn: Chem. Mater. Vol. 11(1999), p.3595.

[17] K.G. Kanade, R.R. Hawaldar, R. Pasricha, S. Radhakrishnan, T. Seth, U.P. Mulik, B.B. Kale and D.P. Amalnerkar: Mater. Lett. Vol. 59 (2005), p.554.

Fetching data from Crossref.
This may take some time to load.