Safety and Structural Integrity 2006

Volume 120

doi: 10.4028/www.scientific.net/SSP.120

Paper Title Page

Authors: Dong Ho Bae, Seong Cheol Jang, Gyu Young Lee
Abstract: In this paper, as a fundamental study to evaluate fracture characteristics and material degradation by corrosion, evaluated electrochemical corrosion and corrosion fatigue characteristics of CF8A steel using as a material of the piping system in nuclear power plant. CF8A steel was artificially degraded at 400°C for 3 months. The environmental test condition is 3.5wt.% NaCl solution of room temperature. Corrosion rate of degraded CF8A steel in NaCl solution of room temperature increases with concentration of NaCl solution increase. However, concentration of NaCl solution will be more than 4.0wt.%, it shows decreasing tendency. Crack growth rates of degraded and not-degraded CF8A steel in air condition do not show remarkable difference. However, in 3.5wt.% NaCl solution, crack growth rates of them showed higher than ones in air. Particularly, crack growth rate of degraded material remarkably increases compare to one of notdegraded material.
3
Authors: Weon Keun Song, Jae Sil Park
Abstract: It is known that fracture characteristics are changed due to the geometric configuration. Also, it is known that toughness data obtained from the standard specimen test are conservative to predict fracture behavior of the real piping. Thus fracture behavior by tests of pipes would to be applied to the integrity evaluation for the piping system. However, fracture test with real pipe is not only difficult to perform but also very expensive, and requires lots of experience. So an estimation method of pipe’s fracture behavior is necessary to solve this problem. The objective of this thesis is to propose a method to estimate the fracture behavior of a pipe from the result of the standard specimen fracture test. For this, fracture tests for standard specimens and pipes are conducted. The resultant load - load-line displacement record of the standard specimen was transformed to that of a pipe by load separation method. To begin with, the load versus load-line displacement curve of a standard specimen extracted from a pipe is normalized by a geometry function of the CT specimen. Then this normalized curve was converted to pipe’s load versus displacement curve by a geometry function of pipe. To verify the constraint factor and the geometric function of pipe, finite element analyses were performed. To demonstrate the proposed method, experimental results of pipes are compared with predicted results. Calculated results from CT specimens are similar to experimental results of pipes. Therefore the transformability from a CT specimen to a pipe by load separation method is proved. Consequently the applicability of the proposed method was proved.
15
Authors: Bum Joon Kim, Byeong Soo Lim
Abstract: Various hold periods in a cyclic wave of fatigue load were introduced to investigate loading frequency effects on crack growth behavior and microstructural damage. The crack growth path and microstructural damage characteristics at 600°C in tempered martensitic 9Cr-2W (P92) HAZ of welded steel were studied. Generally, low frequency effect with increasing hold periods affects microstructural damage with microvoids/cavities nucleation due to the effect of creep. Results showed that the fatigue crack growth behavior was sensitive to the loading frequency. As frequency decreased, the fatigue crack growth rate increased and the crack path mode changed from transgranular to intergranular in terms of microstructural damage. As the loading frequency decreased, it was found that the microvoids /cavities and microcracks that formed along the prior austenite grain boundaries ahead of the main crack contributed to the intergranular crack growth.
21
Authors: J.C. Kim, Jae Boong Choi, Yoon Suk Chang, Young Jin Kim, Youn Won Park, Young Hwan Choi
Abstract: While the demand on electric power is consistently increasing, public concerns and regulations for the construction of new nuclear power plants are getting restrict, and also operating nuclear power plants are gradually ageing. For this reason, the interest on lifetime extension for operating nuclear power plants by applying lifetime management system is increasing. The 40-year design life concept was originally introduced on the basis of economic and safety considerations. In other words, it was not determined by technological evaluations. Also, the transient design data which were applied for fatigue damage evaluation were overly conservative in comparison with actual transient data. Therefore, the accumulation of fatigue damage may result in a big difference between the actual data and the design data. The lifetime of nuclear power plants is mostly dependent on the fatigue life of a reactor pressure vessel, and thus, the exact evaluation of fatigue life on a reactor pressure vessel is a crucial factor in determining the extension of operating life. The purpose of this paper is to introduce a real-time fatigue monitoring system for an operating reactor pressure vessel which can be used for the lifetime extension. In order to satisfy the objectives, a web-based transient acquisition system was developed, thereby, real-time thermal-hydraulic data were reserved for 18 operating reactor pressure vessels. A series of finite element analyses was carried out to obtain the stress data due to actual transient. The fatigue life evaluation has been performed based on the stress analysis results and, finally, a web-based fatigue life evaluation system was introduced by combining analysis results and on-line monitoring system. Comparison of the stress analysis results between operating transients and design transients showed a considerable amount of benefits in terms of fatigue life. Therefore, it is anticipated that the developed web-based system can be utilized as an efficient tool for fatigue life estimation of reactor pressure vessel.
25
Authors: Young Hwan Choi, Sun Yeong Choi, Nam Su Huh
31
Authors: Joon Seong Lee, Sang Log Kwak, Chang Ryul Pyo
Abstract: Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Pressure tube material gradually pick up deuterium, as such are susceptible to a crack initiation and propagation process called delayed hydride cracking (DHC), which is the characteristic of pressure tube integrity evaluation. If cracks are not detected, such a cracking mechanism could lead to unstable rupture of the pressure tube. Up to this time, integrity evaluations are performed using conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. In this respect, a probabilistic safety assessment method is more appropriate for the assessment of overall pressure tube safety. This paper describes failure probability estimation of the pressure tubes using probabilistic fracture mechanics. Failure assessment diagram (FAD) of pressure tube material is proposed and applied in the probabilistic analysis. In all the analyses, failure probabilities are calculated using the Monte Carlo simulation. As a result of analysis, failure probabilities for various conditions are calculated, and examined application of FAD and LBB concept.
37
Authors: Min Chul Kim, Bong Sang Lee, Won Jon Yang, Jun Hwa Hong
43
Authors: Katsuyuki Shibata, Yasuhiro Kanto, Shinobu Yoshimura, Genki Yagawa
49

Showing 1 to 10 of 43 Paper Titles