Small-Signal Circuit Elements of MIS-Type Nanostructures


Article Preview

Starting from a mean field calculation for the static capacitance of a MIS-nanostructure with a near back gate [P.N. Racec, E. R. Racec and U. Wulf, Phys. Rev. B 65, 193314, (2002)] we develop an approach to determine the equivalent small-signal circuit. The analyzed system has an open character, taken into account in the Landauer-Büttiker formalism. The Coulomb interaction is treated in Hartree approximation. Consistent with our static calculations we determine the charge-charge correlation function in the random phase approximation to find the ac-admittances. The small-signal circuit consists of a voltage-dependent capacitance and a resistance in series. Beyond a characteristic frequency c ν they become frequency dependent. The characteristic frequency is given by the life time of specific resonance which develops in the system.



Solid State Phenomena (Volumes 121-123)

Edited by:

Chunli BAI, Sishen XIE, Xing ZHU




P.N. Racec and U. Wulf, "Small-Signal Circuit Elements of MIS-Type Nanostructures", Solid State Phenomena, Vols. 121-123, pp. 549-552, 2007

Online since:

March 2007




[1] M.J. Kelly: Low-dimensional Semiconductors (Clarendon Press, Oxford 1995).

[2] T. Ando et al. (Eds. ): Mesoscopic Physics and Electronics (Springer Verlag, Berlin 1998).

[3] D.K. Ferry, S.M. Goodnick: Transport in Nanostructures (Cambridge University Press, Cambridge 1999).

[4] G. Platero, R. Aguado: Phys. Rep. 395 (2004) 1.

[5] R. López, R. Aguado, G. Platero, C. Tejedor: Phys. Rev. B 64 (2001) 075319.

[6] J.Q. You, C. -H. Lam, H.Z. Zheng: Phys. Rev. B 62 (2000) (1978).

[7] I.E. Aronov et al.: Phys. Rev. B 58 (1998) 9894.

[8] M. Büttiker: J. Phys.: Condens. Matter 5 (1993), 9361.

[9] M. Büttiker, A. Preêtre, H. Thomas: Phys. Rev. Lett 70 (1993), 4114.

[10] G. Baym, L.P. Kadanoff: Phys. Rev. 124 (1961), 287.

[11] P.N. Racec, E.R. Racec, U. Wulf: Phys. Rev. B 65 (2002), 193314.

[12] V.T. Dolgopolov et al. Phys. Low-Dim. Struct. 6 (1996), 1.

[13] H. Ehrenreich, M.H. Cohen,: Phys. Rev. 115 (1959), 786.

[14] H. Haken: Quantenfeldtheorie des Festkörpers (Verlag B.G. Teubner, Stuttgart, 1973) p. 138ff.

[15] L. Hedin, S. Lundquist: Solid State Physics, Vol. 23 (Academic Press New York, 1969).

[16] U. Wulf et al.: Materials Science and Engineering C 23 (2003) 675.