Grand Canonical Monte Carlo Simulations for the Prediction of Adsorption Capacity of Hydrogen in MOFs

Abstract:

Article Preview

We performed grand canonical Monte Carlo simulations on the series of MOFs, that are Metal-Organic Frameworks having various organic linkers and nanocube frameworks, to find out rational design and synthetic strategies toward efficient hydrogen storage materials. The adsorption amounts of hydrogen molecules showed diverse range according to the variation of parameter values. This indicated that the hydrogen adsorption was sensitive to the values of parameters corresponding to the non-bonding interactions. The optimization of the parameters was done to fit the experimental results at 77 K. After the parameterization of the potential function, we adopted this condition to predict the adsorption amount of hydrogen molecules on IRMOF-3, which has NH2 group as the substituent of hydrogen bonded to benzene ring. The calculation results showed good agreement with experimental adsorptions and we analyzed the adsorption sites of each MOF and the relationship between the adsorption characteristics and the hydrogen uptake capacity.

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Edited by:

Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park

Pages:

1693-1696

DOI:

10.4028/www.scientific.net/SSP.124-126.1693

Citation:

D. H. Jung et al., "Grand Canonical Monte Carlo Simulations for the Prediction of Adsorption Capacity of Hydrogen in MOFs", Solid State Phenomena, Vols. 124-126, pp. 1693-1696, 2007

Online since:

June 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.